• 제목/요약/키워드: base isolators

검색결과 91건 처리시간 0.018초

방진을 고려한 항공 정찰용 카메라 모듈부의 진동특성에 관한 연구 (A Study on the Vibration Characteristics of Camera Module for Aerial Reconnaissance Considering Vibration Isolator)

  • 이상은;이태원
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.545-553
    • /
    • 2012
  • A Gimbal structure system in observation reconnaissance aircraft is made up of camera module and stabilization drive device supporting camera module. During flight for image recording, the aircraft undergoes serious accelerations with wide frequencies due to several factors. Though base excitation of stabilization drive device induces vibration of camera module, it must get the stable and clean images. To achieve this aim, acceleration of camera module must be reduced. Hence, vibration isolators were installed to stabilization drive device. Considering isolators and bearings in the stabilization drive device, vibration characteristics of gimbal structure system were analyzed by finite element method. For three translational direction, acceleration transmissibility of camera module was calculated by harmonic responses analysis in the frequency range of 5 ~ 500 Hz. In addition to, sine-sweep experiment were performed to prove correctness of present analysis.

비선형 내진 손상도 평가 및 보강상태함수를 이용한 기존교량의 내진 보강 전략 (Seismic Nonlinear Damage Assessment and Retrofit Strategies for Existing Bridges with Isolation System using Retrofit Slate Function)

  • 조효남;최현호;엄원석;신만규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.179-191
    • /
    • 2002
  • This paper presents a systematic approach to the seismic nonlinear analysis and retrofit strategies for existing bridges with isolation system using retrofit slate function newly proposed in this study. A seismic retrofit scheme using sliding base isolation system was presented to reduce the seismic hazard for bridge structures. In this study, two types of isolation systems such as lead bearings and sliding isolators were used. The behavior of sliding isolators was modeled by a triaxial interaction model. And three types of earthquakes such as El Centro, San Fernando, and the artificial were used as earthquake ground excitations. Seismic response analyses of the bridge before and after retrofit were effectively carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-Bridge. Also, this paper proposes a retrofit state function for easily representing the efficiency of a retrofit scheme.

Experimental investigation on the effectiveness of under-foundation isolator against train-induced vibrations considering foundation type

  • Ehsan Haghighi;Javad Sadeghi;Morteza Esmaeili
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.121-133
    • /
    • 2024
  • In this paper, the performance of under-foundation isolators against generally annoying train-induced vibrations was examined experimentally. The effect of foundation type on the efficacy of such isolators was investigated for the first time. To this end, laboratory models including a soil container, soil, building with three types of foundation (i.e., single, strip, and mat), and isolator layer were employed. Through various dynamic tests, the effects of foundation type, isolation frequency, and the dominant frequency of train load on the isolator's performance were studied. The results demonstrated that the vibration level in the unisolated building with the strip and mat foundation was, respectively, 29 and 38% lower than in the building with the single foundation. However, the efficacy of the isolator in the building with the single foundation was, respectively, 21 and 40% higher than in the building with the strip and mat foundation. Furthermore, a lower isolation frequency and a higher excitation frequency resulted in greater isolator efficacy. The best vibration suppression occurred when the excitation frequency was close to the floor's natural frequency.

비선형 탄성 방진 고무부에 충격 가속도를 받는 짐발 구조 시스템의 동적 해석 (Dynamic Analysis of Gimbal Structure System Including Nonlinear Elastic Rubber Vibration Isolator with Shock Acceleration)

  • 이상은;이태원
    • 대한기계학회논문집A
    • /
    • 제40권4호
    • /
    • pp.415-422
    • /
    • 2016
  • 충격 가속도가 기계 시스템에 가해지면 시스템의 기능 저하 및 파손이 발생할 수 있다. 이러한 문제점을 방지하기 위하여 감시 정찰 비행기에 장착되는 짐발 구조 시스템은 설계 사양으로 MIL-STD-810G 충격 규격을 반드시 만족해야 한다. 일반적으로 비행기에서 전달되는 충격을 완화하기 위하여 시스템의 기초부에 방진고무가 설치된다. 고무는 비선형 하중-변형 관계를 가지므로 정확한 시스템의 충격 응답 계산이 어렵다. 이를 해결하기 위하여 비선형 특성을 2개의 선형으로 근사화하여 기초부에 충격 가속도를 받는 시스템의 동적 해를 유한요소법으로 구하였다. 그리고 동일한 조건에서 행한 실험과 비교 결과 제안된 해석 방법이 강성과 감쇠에서 비선형성을 갖는 방진고무가 포함된 짐발 구조 시스템의 동적 해석에도 유용함을 입증하였다.

Comparing the dynamic behavior of a hospital-type structure with fixed and isolated base

  • Nasery, Mohammad Manzoor;Ergun, Mustafa;Ates, Sevket;Husem, Metin
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.657-671
    • /
    • 2015
  • The level of ductility is determined by depending on the intended use of the building, the region's seismic characteristics and the type of structural system when buildings are planned by engineers. Major portion of seismic energy is intended to be consumed in the plastic zone in structural systems of high ductility, so the occurrence of damages in load bearing and non-load bearing structural elements is accepted in planning stage under severe earthquakes. However, these damages must be limited among specific values in order not to endanger buildings in terms of the bearing capacity. Isolators placed between the basement and upper structure make buildings behave elastically by reducing the effects of seismic loads and improving seismic performance of building significantly. Thus, damages can be limited among desired values. In this study, the effectiveness of seismic isolation is investigated on both fixed based and seismic isolated models of a hospital building with high ductility level with regard to lateral displacements, internal forces, structural periods and cost of the building. Layered rubber bearings are interposed between the base of the structure and foundation. Earthquake analysis of the building are performed using earthquake records in time domain (Kocaeli, Loma Prieta and Landers). Results obtained from three-dimensional finite element models are presented by graphs and tables in detail. That seismic isolation reduces significantly the destructive effects of earthquakes on structures is seen from the results obtained by seismic analysis.

Investigation on seismic isolation retrofit of a historical masonry structure

  • Artar, Musa;Coban, Keziban;Yurdakul, Muhammet;Can, Omer;Yilmaz, Fatih;Yildiz, Mehmet B.
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.501-512
    • /
    • 2019
  • In this study, seismic vulnerability assessment and seismic isolation retrofit of Bayburt Yakutiye Mosque is investigated. Bayburt Yakutiye Mosque was built in the early 19th century at about 30-meter distance to Coruh river in the center of Bayburt in Turkey. The walls of historical masonry structure were built with regional white and yellow stones and the domes of the mosque was built with masonry bricks. This study is completed in four basic phases. In first phase, experimental determination of the regional white stone used in the historical structure are investigated to determine mechanical properties as modulus of elasticity, poison ratio and compression strengths etc. The required information of the other materials such as masonry brick and the regional yellow stone are obtained from literature studies. In the second phase, three dimensional finite element model (FEM) of the historical masonry structure is prepared with 4738 shell elements and 24789 solid elements in SAP2000 software. In third phase, the vulnerability assessment of the historical mosque is researched under seismic loading such as Erzincan (13 March 1992), Kocaeli (17 August 1999) and Van (23 November 2011) earthquakes. In this phase, the locations where damage can occur are determined. In the final phase, rubber base isolators for seismic isolation retrofit is used in the macro model of historical masonry mosque to prevent the damage risk. The results of all analyses are comparatively evaluated in details and presented in tables and graphs. The results show that the application of rubber base isolators can prevent to occur the destructive effect of earthquakes.

면진된 비상디젤발전기의 지진위험도 평가 (Seismic Risk Evaluation of Isolated Emergency Diesel Generator System)

  • 김민규;대조정수;전영선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.217-222
    • /
    • 2007
  • An Emergency Diesel Generator (EDG) is one of the safety related equipments of a Nuclear Power Plant. The seismic capacity of an EDG in nuclear power plants influences the seismic safety of the plants significantly. A recent study showed that the increase of the seismic capacity of the EDG could reduce the core damage frequency (CDF) remarkably. It is known that the major failure mode of the EDG is a concrete coning failure due to a pulling out of the anchor bolts. The use of base isolators instead of anchor bolts can increase the seismic capacity of the EDG without any major problems. This study introduces a seismic risk analysis method and presents sample results about the seismically isolated and conventional EDG system.

  • PDF

승용차 전용 조립식 고가도로의 내진설계 연구 (Seismic Design of Prefabricated Light Weight Bridges)

  • 강형택;박영하;김성훈;이일근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.288-294
    • /
    • 2003
  • Increasing the volume of traffic on the roads causes social and economical problems such as increasing air-pollution and distribution cost. Prefabricated light weight bridge becomes a possible solution for these problems in the urban area where it is difficult to construct new one or expend the existing road. There are some merits in this kind of bridge. First, the design live and dead loads are minimized by allowing only passenger cars. Second employing prefabrication construction scheme reduces the construction time. Third, there is no need to buy land if the elevation road is placed on the top of existing one. In seismic design of bridges, base isolation has been an effective solution when the bridge has stiff piers and a heavy superstructure. The prefabricated light weight bridge has different dynamic characteristics from the ordinary bridges. In this paper, the applicability of base isolators such as lead rubber bearing and elastomeric bearing, to prefabricated light weight bridge is examined.

  • PDF

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

Seismic behavior of structures isolated with a hybrid system of rubber bearings

  • Chen, Bo-Jen;Tsai, C.S.;Chung, L.L.;Chiang, Tsu-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.761-783
    • /
    • 2006
  • The enlargement of interest in base isolators as an earthquake-proof design strategy has dramatically accelerated experimental studies of elastomeric bearings worldwide. In this paper, a new base isolator concept that is a hybrid system of rubber bearings is proposed. Uniaxial, biaxial, and triaxial shaking table tests are also performed to study the seismic behavior of a 0.4-scale three-story isolated steel structure in the National Center for Research on Earthquake Engineering in Taiwan. Experimental results demonstrate that structures with a hybrid system of rubber bearings composed of stirruped rubber bearings and laminated rubber bearings can actually decrease the seismic responses of the superstructure. It has been proved through the shaking table tests that the proposed hybrid system of rubber bearings is a very promising tool to enhance the seismic resistance of structures. Moreover, it is demonstrated that the proposed analytical model in this paper can predict the mechanical behavior of the hybrid system of rubber bearings and seismic responses of the base-isolated structures.