• Title/Summary/Keyword: basaltic

Search Result 163, Processing Time 0.023 seconds

The Formation of the Cenozoic Volcanic Edifice in the Goseong-Ganseong Area, Gangwondo, Korea (강원도 고성-간성일대의 신생대 화산체의 형성과정)

  • Kim, Hwa Sung;Kil, Youngwoo;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.627-636
    • /
    • 2012
  • In the Obongri-Goseong area of Gangwondo, South Korea, there are six densely distributed volcanic edifices i.e., Duibaejae, Oeumsan, Galmibong, 249 m height, 166 m height, and 102 m height, and two other volcanic edifices including Goseongsan and Unbongsan volcanic edifice that are separately located from a distance. A previously undiscovered 249m volcanic edifice in Obongri was found in this investigation, and the six volcanic edifices distributed in Obongri will be referred to as the Obongri volcanic edifice group. Volcanic edifices in this area were interpreted by other researchers as being volcanic plug, plug dome, and cylindrical volcanic pipe type edifices. The aim of this study is to investigate the aspect of volcanic activity in the Obongri-Goseong area and the formation of volcanic edifices by examining of the shape of volcanic edifices, stratigraphy, and characterization of volcanic products. All the volcanic edifices in the area are composed of basaltic rocks on the Mesozoic granite basement, and the prevalence of the dome shape increased towards the upper part of the mountain. Three volcanic edifices (Duibaejae, 166 m height, 102 m height) include intercalated pyroclastic deposits between the basaltic rocks and the basement. The pyroclastic deposit in the Duibaejae volcanic edifice is composed of quartz, feldspar, granite fragments originated from the basement, and scoria fragments originated from the volcanic eruption. In addition to angular olivine, plagioclase, and pyroxene xenocrysts, all the basaltic rocks contained mantle xenolith, gabbroic xenolith originated from the lower crust, and granitic xenolith originated from the basement. This fact indicates that magma rapidly rose to the surface and that the volcanic activity was explosive. It is also interpreted that, as the basaltic magma became highly viscous due to the large amount of xenocrysts, the erupted magma formed a dome structure on the surface. The original dome structure was then severely eroded out leaving a plug dome formation on the basement.

Distribution and Petrology of the Columnar Joint in South Korea (남한에서 주상절리의 분포와 암석학적 특성)

  • Ahn, Kun Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-59
    • /
    • 2014
  • This study has been designed to collate distribution, morphology, petrology of columnar joint in South Korea. Reported columnar joint areas in South Korea are 68, until the present time. These can be divided into five group by geography and volcanic activity. 1) The 16 columnar joint areas are distributed in Hantangang region. The 15 areas in this region are composed of basaltic lava in the Quaternary period, and the other 1 area is composed of volcanic rocks in the Cretaceous period. 2) The 18 columnar joint areas are distributed in Jeju island. Most of them are composed of basaltic lava(alkali basalt and Hawaiite), and the Sanbangsan and Baegrokdam area are composed of trachyte in the Quaternary period. Colonnade, entablature and chisel mark of the columnar joint are typically occur in basaltic lava. 3) The 5 columnar joint areas are distributed into the Ulleung island and Dokdo including Guksubawi. These are consisted of relatively well-formed trachyte columns in the Quaternary period. 4) The 8 columnar joint areas are distributed into the Pohang, Gyeongju and Ulsan region and consist of the Tertiary period volcanic rock. It's shape are dome, radial, horizontal and vertical. The 4 columnar joint areas are reported in the Pyeongtaek and Asan city of Chungcheongnamdo and Gosung of Gangwondo. All of them are the Tertiary period basalt. 5) The 15 columnar joint areas are distributed into the west and south coast region. Those are consisted of various rock type(from basalt to dacite), various occurrences(lava flow to welded tuff), and various diameters(20 cm to several meters). The columnar joint of Mudeung mountain and Juwang mountain are welded tuff in the Cretaceous period. The columnar joint is distributed over a wide area in South Korea, 5 in Gangwondo, 13 in Gyeonggido, 2 in Chungnam, 14 in Gyeongbuk, 1 in Jeonbuk, 10 in Jeonnam, 5 in Gyeongnam, and 18 in Jeju. The columnar joints in South Korea can be arranged in order of formative period, 18 in the Cretaceous period, 12 in the Tertiary period, and 38 in the Quaternary period. By magma series, 36 are belong to alkaline series and 32 are belong to sub-alkaline series.

Variation of Chemical Composition and Relative Movement of Major Elements on the Weathering of Hwang-Dung Granite (황등화강암(黃登花崗岩)의 풍화(風化)에 따른 화학조성(化學組成)의 변화(變化)와 주요원소(主要元素)의 상대적(相對的) 이동(移動))

  • Nam, Ki Sang
    • Economic and Environmental Geology
    • /
    • v.6 no.2
    • /
    • pp.115-122
    • /
    • 1973
  • The writer intended to observe the relative mobility of elements in weathering process of granite, on the outskirts of IRI city at Jeollabukdo KOREA. He analysed fresh granites and weathered ones of Hwang-Dung granite mass and had following conclusions by the triangular diagrams and the oxidized variation diagrams of the analysis. 1) The increasing phenomena of $H_2O$ observed clearly in early and late stage of weathering processes. 2) Granites was weathered by physical weathering in early stage, and it was weathered by chemical weathering in late stage. 3) The ratio of $FeO/Fe_2O_3$, FeO/MgO, and $SiO_2/Al_2O_3$ decreased uniformly from early to late stage of weathering processes. 4) It was proved that weathering potential of granite was larger than that of basaltic rock. 5) The order of mobility in major elements was Ca, Na, K>Si>Mg>Fe, Al.

  • PDF

Geochemistry and Petrogenesis of Pliocene Alkaline Volcanic Rocks of Dok Island, Korea

  • Wee, Soo Meen
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.447-459
    • /
    • 2015
  • Dok island comprises Pliocene volcanic products such as a series of volcanoclastic rocks and lavas ranging in composition from alkali basalts, and trachyandesites to trachytes. Compositional variation of the basaltic rocks can be attributed to fractional crystallization of olivine, clinopyroxene, plagioclase, and magnetite. Chemical variations among the trachyandesites are caused by fractionation of clinopyroxene, plagioclase, and magnetite with minor amphibole, while trachytes are controlled mainly by feldspar fractionation. Incompatible element abundance ratios and chondrite normalized LREE/HREE ratios (e.g., (La/Yb)c: 24.8 to 32.8 for basalts, 15.6 to 31.2 for trachyandesites) suggest that the origins of the basalts and trachyandesites involve both different degrees of partial melting and subsequent fractional crystallization processes. Trace element ratios of the basalts from Dok island are characterized by high Ba/Nb, La/Nb, Ba/Th and Th/U and isotopic ratios (Tasumoto and Nakamura, 1991) that are similar to the EM 1 type of oceanic island basalts such as Gough and Tristan da Cunha basalts.

Miocene Volcanic Rocks Over the Area of Chenonja-bong and Siru-bong, Jinhae (1): Petrography and Petrochemical Characteristics (진해 천자봉-시루봉 일원에 분포하는 마이오세 화산암 (1): 암석기재와 암석화학적 특징)

  • Ryoo, Sam-Hyung;Jeong, Yun-Gi;Lee, Sang-Won;Sung, Jong-Gyu;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.108-131
    • /
    • 2008
  • The Miocene andesite and basalt intruded into and/or extruded on the Cretaceous volcanic and granitic rocks over the area of Chenjabong and Sirubong in the vicinity of Jinhae, southern part of Kyongsang basin. The K-Ar ages of the younger volcanic rocks are from 16 Ma (Sirubong andesite) to 10 Ma (Cheonjabong basalt), which indicate the Miocene volcanism in the outer part of the Tertiary basin in the Korean peninsula. The volcanics are divided into Chenjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite and Cheonjabong basalt. The Cheonjabong andesite is composed of phenocrysts of clinopyroxene and plagioclase ($An_{60{\sim}64}$) and groundmass with lath-like plagioclase ($An_{76{\sim}84}$) and glass. The Cheonjabong basaltic andesite is composed of plagioclase phenocryst ($An_{60{\sim}64}$) with plagioclase lath ($An_{65}$) and glass in groundmass. The Sirubong andesite is only consisted of plagiocalse lath ($An_{64{\sim}68}$) and glass with absence of phonocryst. The Cheonjabong basalt shows typical porphyritic texture with phenocrysts of olivine ($Fo_{69-84}$) and clinopyroxene. The groundmass of the Cheonjabong basalt is composed of microphenocrysts of olivine, clinopyroxene and plagioclase ($An_{66{\sim}71}$) and plagioclase laths ($An_{57{\sim}65}$) showing pillotaxitic and intergranular texture. The Cheonjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite are belong to calc-alkialine but the Cheonjabong basalt is alkaline basalt. By tectonic discrimination diagrams the parental magmas of the volcanic rocks have occurred boundary.

Textural Implications of Fine-Grained Peridotite Xenoliths in Basaltic Rocks from Jeju Island (제주도 현무암에 포획된 세립질 맨틀 페리도타이트 포획암의 조직적 특성)

  • Yang, Kyoung-Hee;Nam, Bok-Hyun;Kim, Jin-Seop;Szabo, Csaba
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Fine-grained peridotite xenoliths are rarely trapped in the basaltic rocks from the southeastern part of Jeju Island. Based on textural characteristics of the constituent phases showing uniform-sized, fine-grained tabular to mosaic grains with rare porphyroclastic relics, the studied samples can be defined as fine-grained, foliated porphyroclastic peridotites (FPP). Almost no significant difference among the FPPs in textures and major element compositions implies that the FPPs were derived from a structural domain, experiencing similar deformation events and deformation patterns. Moreover, the bimodal distribution with kink-banded porphyroclasts ($2{\sim}3mm$) and stain-free neoblasts ($200{\sim}300{\mu}m$), straight to gently curved grain boundaries with triple junctions, interstitial melt pockets, and microstructures for migrating grain boundary suggest that the studied samples went through dynamic recrystallization (${\pm}$ static recrystallization) in the presence of melt/fluid movement along foliation planes. No notable difference between the FPP and common protogranular xenoliths in major element compositions and geochemical evolution also implies that the FPP and protogranular xenoliths were from a similar horizon. Thus, the textural and geochemical characteristics of the FPPs reflects deformation events occurred at a localized and narrow zone within the lithospheric mantle beneath the Jeju Island. Although further detailed studies are necessary to define deformation events, the most possible process which could trigger deformation in the FPP in the rigid upper mantle was the ascending basaltic magma forming high-stress deformation zones. The suggested high-stress deformation zones in the lithosphere beneath the Jeju Island may be produced by paleo-faulting events related to the ascent of basalt magma before Jeju Island was formed.

A Nested Cauldron Structure in the Tertiary Miocene Eoil Basin, Southeastern Korea (한반도 동남부 제3기 마이오세 어일분지내 둥지형 화산함몰구조)

  • Son, Moon;Kim, In-Soo;Ock, Soo-Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.121-131
    • /
    • 2001
  • The combination of geological, structural and satellite image studies is used to make an examination of the Miocene eruptive type in the Eoil Basin, SE Korea. The basin subsided by the NW-SE extension due to NNW dextral shearing during the East Sea opening. Based on geological structures as well as lithofacies and ages of the basin-fills, it is divided into the NE subbasin and the SW subbasin which were abundantly filled with basaltic volcanics and marine sediments without volcanic materials, respectively: Syndeposional synclines and anticlines are characteristically developed in the NE subbasin, which amplitudes decrease away from the adjacent normal faults to make them into a homoclinal structure. The thicker lavas as well as the younger agglomerates and lacustrine sediments, which show circular distributions, are distributed around the axial zones of major synclines. The satellite image shows four remarkable circular structures within the NE subbasin. They are located adjacent to and along the normal faults, and they are laid almost exactly on the axial zones of the synclines as well as on the distribution area of the agglomerates and lacustrine sediments. These facts indicate that the basaltic lava effusion were conducted by the normal faults like a kind of fissure-eruption and its activity was more predominant at the sites in where the synclines are developed. More active effusion of lava became a reason for deeper subsidence to make differential subsidence and syndepositional folding adjacent to and along the normal faults. Hence, we suggest that a nested cauldron structure was formed in the NE subbasin of the Eoil Basin, and that the volcanism made the subbasin to be a lava pond and controlled the process of filling and sedimentation in the subbasin.

  • PDF

Mineralogy and Genesis of Bentonites from the Tertiary Formations in Geumgwangdong Area, Korea (제(第)3기층(紀層)에 부존(賦存)하는 점토광물(粘土鑛物)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan;Yu, Jae Young
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.399-410
    • /
    • 1985
  • Bentonites from the Janggi Group of the Lower Miocene age from the Geumgwangdong area, Korea, have been studied for mineralogical and genetic characterization. The Janggi Group is subdivided, in ascending order, into the Janggi Conglomerate, the Nuldaeri Tuff, the Geumgwangdong Shale, the Lower Coal-bearing Formation, the Basaltic Tuff, and the Upper Coalbearing Formation. Bentonites occur as thin or thick beds in all sedimentary units of the Janggi Group, except for the Janggi Conglomerate. Significant bentonite deposits are found in the Nuldaeri Tuff, the Lower Coal-bearing Formation and the Basaltic Tuff. Bentonites consist mainly of smectite (mainly montmorillonite), with minor quartz, cristobalite, opal-CT and feldspar. Occasionally, kaolinite, clinoptilolite or gypsum is associated with bentonites. Bentonites were studied by the methods of petrographic microscopy, X-ray diffraction, thermal analysis (DT A and TG), infrared absorption spectroscopic analysis, SEM, intercalation reaction, and chemical analysis. Smectites commonly occur as irregular boxwork-like masses with characteristic curled thin edges, but occasionally as smoothly curved to nearly flat thin flakes. Most of smectites have layer charge of 0.25-0.42, indicating typical montmorillonite. Crystal-chemical relations suggest that Fe is the dominant substituent for Al in the octahedral layer and there are generally no significant substituents for Si in the tetrahedral layer. Ca is the dominant interlayer cation in montmorillonite. Therefore, montmorillonite from the study area is dioctahedral Ca-montmorillonite. Occurrence and fabrics of bentonites suggest that smectites as well as cristobalite, opal-CT and zeolites have been formed diagenetically from tuffaceous materials. The precursor of smectites is trachytic or basaltic tuff. Smectites derived from the former contain relatively more $Al_2O$ a and less $Fe_2O_3$ than those from the latter.

  • PDF

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

Geophysical well logs in basaltic area, Jeju Island (제주 현무암 지역의 용암분출에 따른 물리검층 반응의 특성 고찰)

  • Hwang Seho;Shim Jehyun;Park Inhwa;Choi Sun Young;Park Ki Hwa;Koh Gi Won
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.55-71
    • /
    • 2005
  • Jeju Island is mainly composed of basaltic lava flows and subordinate amounts of volcaniclastic sedimentary rocks. Jeju Province operates the monitoring wells for seawater intrusion problems around Jeju Island to evaluate of groundwater resources in coastal area. Various surveys and monitoring have been performed in boreholes, and also conventional geophysical well loggings conducted to identify basalt sequences and assess seawater intrusion problems. Various conventional geophysical well logs, including radioactive logs, electrical log, caliper log, and temperature and conductivity log and heat-pulse flowmeter log were obtained in 29 boreholes. The results of geophysical well loggings for saturated rocks are interesting and consistent. Natural gamma logs are useful in basalt sequences to sedimentary interbeds, unconsolidated U formation, and seoguipo formation with higher natural gamma log regardless of saturated or unsaturated basalts. Neutron logs are very effective to discriminate among individual lava flows, flow breaks, and sedimentary interbeds in saturated formation. In hyalocastite, porosity is high and resistivity is low, and we think that hyalocastite is a major pathway of fluid flow. In trachybasalt, porosity has a wide range and resistivity is high. In sedimentary interbeds, unconsolidated U formation and seoguipo formation, porosity is high and resistivity is low. The temperature logs in eastern area in Jeju are useful to interpret the hydrogeological unit and evaluate seawater intrusion in Suan area.

  • PDF