Textural Implications of Fine-Grained Peridotite Xenoliths in Basaltic Rocks from Jeju Island

제주도 현무암에 포획된 세립질 맨틀 페리도타이트 포획암의 조직적 특성

  • Yang, Kyoung-Hee (Dept. of Earth Environmental science, College of Natural Sciences, Pusan National University) ;
  • Nam, Bok-Hyun (Dept. of Earth Environmental science, College of Natural Sciences, Pusan National University) ;
  • Kim, Jin-Seop (Dept. of Earth Environmental science, College of Natural Sciences, Pusan National University) ;
  • Szabo, Csaba (Lithosphere Fluid Research Lab, Institute of Geography and Earth Sciences, Eotvos University)
  • 양경희 (부산대학교 자연과학대학 지구환경시스템학부) ;
  • 남복현 (부산대학교 자연과학대학 지구환경시스템학부) ;
  • 김진섭 (부산대학교 자연과학대학 지구환경시스템학부) ;
  • Published : 2009.03.31

Abstract

Fine-grained peridotite xenoliths are rarely trapped in the basaltic rocks from the southeastern part of Jeju Island. Based on textural characteristics of the constituent phases showing uniform-sized, fine-grained tabular to mosaic grains with rare porphyroclastic relics, the studied samples can be defined as fine-grained, foliated porphyroclastic peridotites (FPP). Almost no significant difference among the FPPs in textures and major element compositions implies that the FPPs were derived from a structural domain, experiencing similar deformation events and deformation patterns. Moreover, the bimodal distribution with kink-banded porphyroclasts ($2{\sim}3mm$) and stain-free neoblasts ($200{\sim}300{\mu}m$), straight to gently curved grain boundaries with triple junctions, interstitial melt pockets, and microstructures for migrating grain boundary suggest that the studied samples went through dynamic recrystallization (${\pm}$ static recrystallization) in the presence of melt/fluid movement along foliation planes. No notable difference between the FPP and common protogranular xenoliths in major element compositions and geochemical evolution also implies that the FPP and protogranular xenoliths were from a similar horizon. Thus, the textural and geochemical characteristics of the FPPs reflects deformation events occurred at a localized and narrow zone within the lithospheric mantle beneath the Jeju Island. Although further detailed studies are necessary to define deformation events, the most possible process which could trigger deformation in the FPP in the rigid upper mantle was the ascending basaltic magma forming high-stress deformation zones. The suggested high-stress deformation zones in the lithosphere beneath the Jeju Island may be produced by paleo-faulting events related to the ascent of basalt magma before Jeju Island was formed.

제주도 동남부 신산리 해안가에 분포하는 현무암에 세립질의 맨틀 페리도타이트가 드물게 포획되어 있으며, 반상쇄정 잔류물의 거정질 입자와 세립질의 입자로 구성된 조직적 특성에 의해 반상쇄정의 페리도타이트 맨틀포획암(FPP)으로 정의된다. 조사되어진 FPP들의 서로 유사한 조직적 특성과 주성분원소 조성은 FPP가 하나의 구조 영역에서 유래했음을 지시한다. 또한 킹크밴드를 가지는 거정의 반상쇄정($2{\sim}3mm$) 사이에 변형의 흔적이 없는 세립질의 입자($200{\sim}300{\mu}m$)로 구성된 쌍봉분포, 삼중점과 직선형의 입자경계, 간극사이에 형성된 멜트포켓, 입자경계가 이동했음을 나타내는 미세구조 등은 FPP가 동력재결정작용 ${\pm}$ 정적재결정작용을 경험하였음을 반영하고 있다. 이러한 변형사건에는 멜트/유체의 이동이 있었으며, 특히 엽리면을 따라 일어났다. 신산리 지역에 가장 흔하게 산출되는 프로토그라뉼라 조직의 맨틀포획암과 FPP는 매우 유사한 주성분원소 조성을 보이는데, 이는 FPP가 프로토그라뉼라 조직의 포획암과 비슷한 상부맨틀 깊이에 위치하고 있었음을 나타낸다. 이러한 FPP의 조직적 특성과 주성분원소 조성은 FPP가 지엽적인 소규모의 좁은 영역에 관여한 변형사건을 경험하였음을 나타낸다. 이 변형사건의 실체에 대한 것은 앞으로 좀 더 연구가 진행되어야 할 것이나, 제주도가 만들어지기 이전의 상부맨틀 암석권에서 마그마의 상승과 관련된 단층작용에 의해 형성되었을 가능성을 제시한다.

Keywords

References

  1. 고기원, 박윤석, 박언배 (2004) 제주도 동부지역의 지하 지질분포와 $^{40}Ar-^{39}Ar$ 연대. 2004 대한지질학회춘계학술답사, 대한지질학회, 29-50
  2. 남복현 (2008) 제주도 현무암에 포획된 세립질의 엽리를 가지는 맨틀 페리도타이트 포획암 연구. 부산대학교 석사학위논문, 102p
  3. 남복현, 양경희, Hidas, K., 엄영보, and Szabo, Cs. (2006) Phlogopite in mantle xenoliths from Jeju Island, South Korea. 2006 대한지질학회 추계공동학술발표회 초록집, 한국지질자원연구원, 10월 26-27일, 98p
  4. 박준범, 박기화, 조등룡, 고기원 (1999) 제주도 제 4기 화산암류의 암석화학적 분류. 지질학회지, 35, 253-264
  5. 원종관, 길영우, 이문원 (1998) 제주도 동북사면에 분포하는 화산암류의 암석학적 연구. 지구과학회지, 19, 329-342
  6. 윤성효, 고정선, 안지영 (1998) 제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구. 자원환경지질학회지, 31, 447-458
  7. 양경희, 황병훈 (2005) 제주도 알칼리 현무암에 산출되는 단사휘석의 기원. 광물학회지, 18, 33-43
  8. Arai, S. (1994) Compositional variation of olivinechromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. J. Volcanol. Geotherm. Res., 59, 279-293 https://doi.org/10.1016/0377-0273(94)90083-3
  9. Choi, S.H., Jwa, Y.J., and Lee, H.Y. (2001) Geothermal gradient of the upper mantle beneath Jeju Island, Korea: Evidence from mantle xenoliths. The Island Arc 10, 175-93 https://doi.org/10.1046/j.1440-1738.2001.00317.x
  10. Choi, S.H., Lee, J.I., Park, C.H., and Moutte, J. (2002) Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. The Island Arc, 11, 221-235 https://doi.org/10.1046/j.1440-1738.2002.00367.x
  11. Downes, H., Embey-Isztin, A., and Thirlwall, M.F. (1992) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contributions to Mineralogy and Petrology, 109, 340-354 https://doi.org/10.1007/BF00283323
  12. Downes, H. (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. Journal of Petrology, 42, 233-250 https://doi.org/10.1093/petrology/42.1.233
  13. Frey, F.A. and Prinz, M. (1978) Ultramafic inclusions from San Carlos, Arizona; petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters 38, 129-178 https://doi.org/10.1016/0012-821X(78)90130-9
  14. Griffin, W.L., O’Reilly, S.Y., and Ryan, C.G. (1999) The composition and origin of subcontinental lithospheric mantle. In: Fei, Y., Bertka, C.M. and Mysen, B.O. (eds.), Mantle Petrology: Field Observation and High-pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, Geochemical Society Special Publication #6. The Geochemical Society, Houston, 13-45
  15. Hidas, K., Falus, G., Szabo, C., Szabo, P.J., Kovacs, I., and Foldes, T. (2007a) Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 43, 484-503 https://doi.org/10.1016/j.jog.2006.10.007
  16. Hidas, K,. Yang, K.H., Berkesi, M., Um, Y.B., Nam, B.H., and Szabo, Cs. (2007b) Significance of $CO_2$ fluid inclusion in the upper mantle: a case study from Jeju Island (South Korea). 2007 The Joint Scientific Presentation of the Mineralogical Society of Korea and Petrological Society of Korea (Abstracts), Andong National University, May 31, 35-37
  17. Kim, K.H., Nagao, K., Suzuki, K., Tanaka, T., and Park, E.J. (2003) Evidences of the presence of old continental basement in Jeju volcanic Island, South Korea, revealed by Radiometric ages and Nd-Sr isotopes of granitic rocks. Journal of Geochemical Exploration, 36, 421-441
  18. Lee, M.W. (1982) Petrology and geochemistry of Jeju volcanic island, Korea. The Science Report of the Tohoku Imperial University Section SeriesⅢ, 15, 177-256
  19. Lloyd, G.E., Farmer, A.B., and Mainprice, D. (1997) Misorientation analysis and orientation of subgrain and grain boundaries. Tectonophysics, 279, 55-78 https://doi.org/10.1016/S0040-1951(97)00115-7
  20. Mercier, J.C.C. and Nicolas, A. (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths form basalts. Journal of Petrology, 16, 454-487 https://doi.org/10.1093/petrology/16.1.454
  21. Passchier, C.W. and Trouw, R.A.J. (1996) Microtectonics. Springer-Verlag, Berlin, 289p
  22. Szabo Cs., Harangi, Sz., Vaselli, O., and Downes, H. (1995) Temperature and oxygen fugacity in peridotite xenoliths from the Carpathian-Pannonian Region. Acta Vulcanol, 7, 231-239
  23. Szabo, Cs., Falus, Gy., Zajacz, Z., Kovacs, I., and Bali, E. (2004) Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics, 393, 119-137 https://doi.org/10.1016/j.tecto.2004.07.031
  24. Tatsumi Y., Shukuno H., Yoshikawa M., Chang Q., Sato K., and Lee M.W. (2005) The petrology and geochemistry of volcanic rocks on Jeju Island: Plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553 https://doi.org/10.1093/petrology/egh087
  25. Vauchez, A. and Garrido, C.J. (2001) Seismic properties of an asthenospherized lithospheric mantle: constraints from lattice preferred orientations in peridotite from the Ronda massif. Earth Planet. Sci. Lett., 192, 235-249 https://doi.org/10.1016/S0012-821X(01)00448-4
  26. Xu, X., Oreilly, S.Y., Zhou, X., and Griffin, W.L. (1996) A xenolith-derived geotherm and the crust mantle boundary at Qilin, southeastern China. Lithos, 38, 41-62 https://doi.org/10.1016/0024-4937(95)00043-7
  27. Xu, X., Oreilly, S.Y., Griffin, W.L., Zhou, X., and Huang, X. (1998) The nature of the Cenozoic lithosphere at Nushan, Eastern China. In Flower M.F.J., Chung S.L., Lo, C.H. and Lee T.Y. (eds.), Mantle dynamics and plate interactions in east Asia, Geodynamics Series, 27, 167-95
  28. Xu, Y.G., Menzies, M.A., Matthew, F., Huang, X.L., Liu, Y., and Chen, X.M. (2003) 'Reactive' harzburgites from Huinan, NE China: Products of the lithosphere- asthenosphere interaction during lithospheric thinning? Geochimica et Cosmochimica Acta, 67, 487-505 https://doi.org/10.1016/S0016-7037(02)01089-X
  29. Yang K.H. (2004) Fluid and melt inclusions trapped in xenoliths from the lower crust/upper mantle beneath Jeju Island (I): A preliminary study. Petorlogical Society of Korea, 13, 34-45