• Title/Summary/Keyword: basalt powder sludge

Search Result 7, Processing Time 0.018 seconds

Hardened properties of the cement based Basalt powder sludge mortar for surface preparation (시멘트계 바탕 바름재용 현무암 석분슬러지 모르타르의 경화 특성)

  • Jang, Myung-Houn;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.451-456
    • /
    • 2015
  • This study aimed to evaluate of the hardened properties (mortar consistency, setting time, absorption properties, drying shrinkage, and bond strength) of the basalt powder sludge mortar recycling a basalt powder sludge occurred during the manufacture process of basalt stone as a replacing material for the sea-sand used to cement filling compound for surface preparation. The hardened mortar made of the basalt powder sludge showed an enhanced performance or similar with the properties of normal mortar used to cement filling compound for surface preparation. But, the drying shrinkage was increased more than a normal cement mortar in the hardened mortar made of the basalt powder sludge since curing 8 - 9days. And the bond strength is low in the hardened mortar used the basalt powder sludge. On the whole, properties of the hardened mortar used the basalt powder sludge correspond to the required minimum quality criterion in the KS F 4716 'cement filling compound for surface preparation'.

Basic Performance Evaluation of Dry Mortar Recycled Basalt Powder Sludge (현무암석분 슬러지를 재활용한 드라이몰탈의 기초적 성능평가)

  • Ko, Dongwoo;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • This study was carried out to investigate the possibility of using basalt powder sludge instead of sand in a normal cement dry mortar as a way to recycle basalt powder sludge, which is a waste product from the manufacturing a process of basalt in Jeju. Basic performance evaluations of the dry mortar material included a compressive strength test, a flexural strength test, and SEM to observe the micro structure. The compressive and flexural strengths were increased to a replacement ratio of 21% of basalt powder sludge, whereby a strength enhancement of about 40% greater than that of normal dry mortar was shown. However, the creation of hydration products affected the replacement ratio of the basalt powder sludge. The possibility of using basalt powder sludge waste was identified in this study, and results showed that the basalt powder sludge waste could be used as a material for a secondary product of concrete.

Development of Non-Sintered Ceramic Containing Basalt Powder (현무암 석분을 혼입한 비소성 세라믹의 개발)

  • Kim, Gui-Shik;Kim, Jung-Yun;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.93-99
    • /
    • 2014
  • The purpose of this paper is to manufacture the non-sintered ceramic used lime and industrial waste. The used materials were basalt powder sludge, calcium hydroxide(Ca(OH)2) and additives such as calcium stearate and $TiO_2$. The mixing ratios between Ca(OH)2 and sludge were 5:5, 6:4 and 8:2, respectively. The ceramic forms were pressured by 100, 200 and 300 bar and cured in 14% CO2 for 12 days. The behaviors of compressive strength, specific gravity, water absorption and pH of ceramic form were investigated. The results were compressive strength of over 36 MPa, water absorption of over 8.8%, pH value of over 12.3. And these results satisfied GR F 4006 and 4031 standard.

Application of Powdered Waste Glasses and Calcium Carbonate for Improving the Properties of Artificial Lightweight Aggregate Made of Recycled Basalt Powder Sludge (현무암 석분 슬러지를 재활용한 인공경량골재의 물성개선을 위한 폐유리분말과 탄산칼슘의 활용)

  • Park, Soo-Je;Lee, Sung-Eun;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.230-236
    • /
    • 2014
  • This study was carried out to investigate the manufacturability of artificial lightweight aggregate as a way to recycle basalt powder sludge, which is a waste produced during the manufacturing process of basalt in Jeju. Powdered waste glasses and calcium carbonate are used to improve the characteristics of manufactured artificial lightweight aggregate. Especially, considering the complex factors of basalt powder sludge, powdered waste glasses, and sintering method, the amount of calcium carbonate is appropriate at the 9 wt.% in order to improve the intumescent of lightweight aggregate. Also, the amount of powdered waste glasses is effective with using less than 50 wt.% and applying the direct sintering method at the same time on decreasing the absorption of lightweight aggregate. Furthermore, in order to manufacture artificial lightweight aggregate of high quality with a low specific gravity and low water absorption, it is considered to be more effective to apply the direct sintering method after the surface of artificial lightweight aggregate is covered with powdered waste glasses.

A Study on Bloating of Porous Foam by Pressure Infiltration with H2O2 (과산화수소의 가압침투에 의한 다공성 발포체에 관한 연구)

  • Kim, Gui-Shik;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.86-91
    • /
    • 2016
  • This paper is concerned chiefly with the method of porous foam manufacture using basalt stone powder sludge. The hydrogen peroxide($H_2O_2$) of bloating agent has lots of problems to manufacture porous lightweight aggregate due to fast reaction rate with cement or calcium hydroxide($Ca(OH)_2$). The $H_2O_2$ injecting method using nozzle for manufacturing porous lightweight aggregate is proposed, in this study. This method is to inject $H_2O_2$ at the pressure of 10 MPa on upper side of slurry mixing materials such as stone powder sludge and quick-lime(CaO) by injector. The specimen was dried in furnace at $100^{\circ}C$ for 1 hour and cured at ambient temperature for 30 days. We analyzed the characteristics including specific gravity and water absorption. The experiments were found that the porous foam has low specific gravity, high water absorption and uniform distribution of porous more than manufactured foam by general bloating methods.

A Study on Bloating of Porous Ceramic (다공성 세라믹의 발포에 관한 연구)

  • Kim, Gui-Shik;Kim, Hyeon-Gwan;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • In this study, lightweight aggregate was made from basalt stone powder sludge. Clay and glass powder were respectively added from 0 to 20 wt% and from 0 to 100 wt%. The glass powder helped to form glassy phase which trapped generating gas in the materials. $CaCO_3$ helping bloating process was added from 0 to 10 wt%. It was possible to produce lightweight aggregate at range from $1150^{\circ}C$ to $1200^{\circ}C$. The specimen was heated in furnace at 1100, 1150 and $1200^{\circ}C$ for 15 min, respectively, to sinter aggregates. Chemical composition of materials were determined, and characteristics were analyzed, including specific gravity, water absorption. Lightweight aggregate which was heated at $1200^{\circ}C$ had specific gravity of $0.53g/cm^3$, water absorption of 3.08%, and this value satisfied KS L 8551 standard.

Evaluation of Performance of Modified Recycling Asphalt Mixture and Normal Asphalt Mixture Using Basalt Powder Sludge as Filler (현무암 석분슬러지를 채움재로 활용한 개질재생아스팔트혼합물과 일반아스팔트혼합물의 공용성 평가)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.611-619
    • /
    • 2018
  • Basalt powder sludge (abbreviated BPS) is an inevitable industry by product resulted from the stone processing. Recently, demands for natural materials have been increasing in the construction and landscaping fields, therefore, amounts of BPS have been also increasing. Since most of BPS are used as landfill and earth soil, it is necessary to figure out to expedite their utilization. In this study, by considering the characteristics of precipitation of Jeju, effectiveness of BPS as a filler for asphalt compounds mixed with cement were analyzed. As a result, BPS satisfies quality criterion required in KS F 3501. Marshall mixing designs were performed to determine the optimal asphalt content for the Modified recycling asphalt mixture (27% recycling aggregate) and the Normal asphalt mixture. Effectiveness of BPS were identified by the Marshall Stability Test with the mixing ratio (level 3) of two asphalt compounds and composition ration (level 3) of BPS and cement. Performance of asphalt compounds shown appropriate effect of mixing and composition ratios of the filler were assessed. Test results show that two types of asphalt compounds satisfy the quality standards of the MLIT (2015). Therefore, BPS could be used as filler for asphalt compounds.