• Title/Summary/Keyword: barrier parameter

Search Result 122, Processing Time 0.021 seconds

Development of Multi Dielectric Barrier Discharge Plasma Reactor for Water Treatment (수처리용 다중 유전체 방벽 방전 플라즈마 반응기 개발)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.863-871
    • /
    • 2013
  • Dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. For practical application of the plasma reactor, reactor that can handle large amounts of water are needed. Plasma research to date has focused on small-scale water treatment. This study was carried out basic study for scale-up of a single DBD (dielectric barrier discharge) plasma reactor. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) was used as a performance indicator of multi-plasma reactor. The experiments is divided into two parts: design parameters [effect of distance of single plasma module (1~14 cm), arrangement of ground electrode (single and multi), rector number (1~5) and power number (1~5)]; operation parameter [effect of applied voltage (60~220 V), air flow rate (1~5 L/min), electric conductivity of solution ($1.4{\mu}S/cm$, deionized water)~18.8 mS/cm (addition of NaCl 10 g/L) and pH (5~9)]. Considering the electric stability of the plasma reactor, optimum spacing between the single plasma module was 2 cm. Multi discharge electrodes - single ground electrode array was selected. Combination of power 3-plasma module 5 was the optimal combination for maximum RNO degradation. The optimum 1st voltage and air flow rate for RNO degradation were 180 V and 4 L/min, respectively. The pH and conductivity of the solution was not influencing the RNO degradation.

Drain Induced Barrier Lowering(DIBL) SPICE Model for Sub-10 nm Low Doped Double Gate MOSFET (10 nm 이하 저도핑 DGMOSFET의 SPICE용 DIBL 모델)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1465-1470
    • /
    • 2017
  • In conventional MOSFETs, the silicon thickness is always larger than inversion layer, so that the drain induced barrier lowering (DIBL) is expressed as a function of oxide thickness and channel length regardless of silicon thickness. However, since the silicon thickness is fully depleted in the sub-10 nm low doped double gate (DG) MOSFET, the conventional SPICE model for DIBL is no longer available. Therefore, we propose a novel DIBL SPICE model for DGMOSFETs. In order to analyze this, a thermionic emission and the tunneling current was obtained by the potential and WKB approximation. As a result, it was found that the DIBL was proportional to the sum of the top and bottom oxide thicknesses and the square of the silicon thickness, and inversely proportional to the third power of the channel length. Particularly, static feedback coefficient of SPICE parameter can be used between 1 and 2 as a reasonable parameter.

Control of Short-Channel Effects in Nano DG MOSFET Using Gaussian-Channel Doping Profile

  • Charmi, Morteza
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.270-274
    • /
    • 2016
  • This article investigates the use of the Gaussian-channel doping profile for the control of the short-channel effects in the double-gate MOSFET whereby a two-dimensional (2D) quantum simulation was used. The simulations were completed through a self-consistent solving of the 2D Poisson equation and the Schrodinger equation within the non-equilibrium Green’s function (NEGF) formalism. The impacts of the p-type-channel Gaussian-doping profile parameters such as the peak doping concentration and the straggle parameter were studied in terms of the drain current, on-current, off-current, sub-threshold swing (SS), and drain-induced barrier lowering (DIBL). The simulation results show that the short-channel effects were improved in correspondence with incremental changes of the straggle parameter and the peak doping concentration.

Effect of the Obstacles on Explosion Pressure and Propagation Velocity in Closed Tube (밀폐배관 내의 장애물에 의한 폭발압력과 화염전파속도의 영향)

  • Han, Ou-Sup;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2020
  • In this study, experimental study was conducted to examine the influence of explosion pressure and flame propagation velocity of methane-air mixtures due to the obstacles placed in the explosion space. We used the quantified parameter named barrier ratio in order to generalize the effect of explosion pressure and flame propagation velocity in the closed explosion space with obstacles. From experimental observations, the explosion pressure and flame propagation velocity regardless of the number of obstacles increased with barrier ratio. In the same methane concentration of 10% methane, the flame propagation velocity without obstacle (barrier ratio = 0) was 3.46 m/s but 24.24 m/s (increase about 7 times) with 3 obstacle and barrier ratio of 0.98. In the same barrier ratio, explosion pressure and flame propagation velocity increased sharply with increasing of the number of obstacles.

The Simplified Air Barrier System in the Perimeter Area of Building (간이형 에어베리어 시스템 적용사례 분석)

  • Cho, Jin-Kyun;Shin, Seon-Joon;Cha, Ji-Hyoung;Sung, Jae-Ho;Hong, Min-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.906-911
    • /
    • 2008
  • Because the perimeter of buildings is strongly influenced by solar and the outdoor air temperature, the area has different environmental properties compared to the interior of a building, as in summer heat gain, and in winter heat loss. In particular, if the external wall is glass, the characteristics of the glass material make it pervious to outside conditions, thereby making big changes to the thermal environment. By combining shading device and the efficient exhaust system, an energy saving can be achieved compared to no air barrier systems. The simplified air barrier system is developed with the idea that energy could be conserved by carefully and effectively blowing out the air caught between the glass surface and the roller blind. The way it is configured is therefore by making the roller blind's air-path, and by placing the air output ducts in the most optimum positions. This simplified air barrier system will give improvement in the thermal environment of the parameter area that is strongly affected by solar and the outdoor condition.

  • PDF

Experimental Study on Effect of Electrode Material and Thickness in a Dielectric Barrier Discharge Plasma Actuator Performance (전극 재료 및 두께가 DBD 플라즈마 액추에이터의 성능에 미치는 영향에 대한 실험적 연구)

  • Lee, Seung-Yeob;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.46-50
    • /
    • 2012
  • Plasma actuator makes parallel flow on the wall surface by the interaction between plasma and neutral air particles. Dielectric barrier discharge (DBD) plasma actuator is widely studied as one type of plasma actuators, which consists of one electrode exposed to the environmental gas and the other encapsulated by a dielectric material. This paper is experimentally focused on the performance of DBD plasma actuator mounted on a flat plate, which depends on kinds of the electrode materials, their thicknesses and the supplied voltage including its frequency. We measured the velocity magnitudes of the induced flow by a stagnation probe as a performance parameter of the plasma actuators. The velocity profiles of the flow induced by the plasma actuators are similar in all measurement cases. The magnitude of the induced velocity is strongly influenced by the thickness of the electrodes and the frequency of the input voltage. The performance of DBD plasma actuators is related to the electric properties of the electrode materials such as the ionization energy and the electrical resistivity.

A Basic Study of Plasma Reactor of Dielectric Barrier Discharge for the Water Treatment (수처리용 유전체장벽 플라즈마 반응기에 대한 기초 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.623-630
    • /
    • 2011
  • This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) by using dielectric barrier discharge (DBD) plasma. The DBD plasma reactor of this study consisted of a quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode. The effect of shape (rod, spring and pipe) of ground electrode, diameter (9~30 mm) of ground electrode of spring shape and inside diameter (4~13 mm) of quartz tube, electrode diameter (1~4 mm), electrode materials (SUS, Ti, iron, Cu and W), height difference of discharge and ground electrode (1~15.5 cm) and gas flow rate (1~7 L/min) were evaluated. The experimental results showed that shape of ground electrode and materials of ground and discharge electrode were not influenced the RNO degradation. The thinner the diameter of discharge and ground electrode, the higher RNO degradation rate observed. The effect of height gap of discharge between ground electrode on RNO degradation was not high within the experimented value. Among the experimented parameters, inside diameter of quartz tube and gas flow rate were most important parameters which are influenced the decomposition of RNO. Optimum inside diameter of quartz tube and gas flow rate were 7 mm and 4 L/min, respectively.

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

Radiation Damage of SiC Detector Irradiated by High Dose Gamma Rays

  • Kim, Yong-Kyun;Kang, Sang-Mook;Park, Se-Hwan;Ha, Jang-Ho;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.87-90
    • /
    • 2006
  • Two SiC radiation detector samples were irradiated by Co-60 gamma rays. The irradiation was performed with dose rates of 5 kGy/hour and 15 kGy/hour for 8 hours, respectively. Metal/semiconductor contacts on the surface were fabricated by using a thermal evaporator in a high vacuum condition. The SiC detectors have metal contacts of Au(2000 ${\AA}$)/Ni(300 ${\AA}$) at Si-face and of Au(2000 ${\AA}$)/Ti(300 ${\AA}$) at C-face. I-V characteristics of the SiC semiconductor were measured by using the Keithley 4200-SCS parameter analyzer with voltage sources included. From the I-V curve, we analyzed the Schottky barrier heights(SBHs) on the basis of the thermionic emission theory. As a result, the 6H-SiC semiconductor showed- similar Schottky barrier heights independent to the dose rates of the irradiation with Co-60 gamma rays.

  • PDF

Design of Bumper Backbeam Center Reinforcement Bracket for IIHS Full Overlap Bumper Test (IIHS 풀 오버랩 범퍼 시험 대응 범퍼 백빔 중앙 보강재 설계)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2015
  • Since 2007, Insurance Institute of Highway Safety(IIHS) has conducted the new bumper test using bumper barrier to estimate the repair cost of impacted vehicle. In this study, for the front body FE model of a medium size passenger car analyzes were carried out to optimize the shape of backbeam center reinforcement bracket. First, overlap effect was examined with changing the overlap magnitude and spot welds were added along the backbeam center line for reducing the section shear deformation. Next, for an overlap model design parameter study was performed for the bracket. Thickness effect was examined and an inner reinforcement was added to the bracket. Also, the lower part of bracket was deleted and additionally the bracket length was extended. The results were discussed in terms of backbeam backward deflection, barrier backstop intrusion and weight. Compared with the current design, the final model showed 44.1% bracket weight reduction with 30.0% decrease of backbeam deflection.