• Title/Summary/Keyword: barrier discharge

Search Result 397, Processing Time 0.027 seconds

Experimental Study on Sound Diffraction over Barrier Using a Spark Discharge Sound Source (스파크 음원을 이용한 장벽의 회절음장에 관한 실험 연구)

  • 주진수
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.466-471
    • /
    • 1999
  • The prediction methods of diffraction field in barrier has beenreported much about the infinite length barrier and it is very few work that reasonable sound source was used in experiment. This study, however, has worked about the several model barrier with acoustic scale model experiment. In the case of scale model experiment, it is difficult to use the kind of source with sufficiently characteristics. A spark discharge sound source with the high repeatability, broad band spectra, small size and omnidirectivity has veen used for the prediction of diffraction field. Several model barriers with different length on the ground were considered for the experiment and compared with the the results calculated by the approximation.

  • PDF

Effects of Operating Parameters on Toluene Removal in Dielectric Barrier Discharge Process (무성방전내에서 톨루엔 제거에 미치는 운전변수의 영향)

  • 정재우;이용환;박경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.173-182
    • /
    • 2002
  • We investigated the effects of operating variables, such as electrical. reactor and gas parameters on toluene removal and discharge property in the dielectric barrier discharge (DBD) process. The toluene removal was initiated with the energy transfer to the reactor by loading of voltages higher than the discharge onset value. The energy transfer and toluene removal increased with the applied voltage. Higher removal rate was observed with smooth surface electrode despite of lower energy transfer compared with the coarse electrode, because more uniform discharge can be obtained on smooth surface state. The decrease of dielectric material thickness enhanced the removal efficiency by increasing the discharge potential. The toluene removal efficiency decreased with the increase of the inlet concentration. The increase of gas retention time enhanced the removal efficiency by the increase of energy density. The oxygen and humidity contents seem to exert significant influences on the toluene removal by dominating the generation of electrons, ions, and radicals which are key factors in the removal mechanism.

A Study on the Discharge Characteristics of Micro Dielectric Barrier Discharge Cells by Adding TiO2 or MgO Powder (TiO2 또는 MgO 첨가에 따른 마이크로 유전격벽방전 셀의 방전특성 연구)

  • Han, Chang-Wook;Wi, Sung-Suk;Lee, Don-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1587-1591
    • /
    • 2015
  • For a higher definition discharge cell, the method of high speed addressing is necessary. In order to modify the surface charges, the liquefied $TiO_2$ or MgO powder is added on MgO layer in front glass and on the phosphor in rear glass in micro barrier discharge. Both the electro-optical properties and the discharge time lag characteristics are measured from 4 inch. test panel, such as the discharge voltage, current, luminance, luminous efficacy and discharge time lag. As the results, the statistic time lag is improved by about 40 %.

Corona Discharge and Ozone Generation Characteristics of a Wire-to-Wire Gap with a Ferroelectric Pellet Bed (강유전체 충진 선대선 방전갭의 코로나 방전 및 오존 발생특성)

  • Shin, Jung-Min;Bae, Chang-Hwan;Ahn, Chang-Jin;Lee, Jong-Hoon;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1873-1875
    • /
    • 2003
  • Surface corona discharge characteristics of a ac corona charged ferroelectric pellet barrier have been investigated experimentally. Electric charged stored on the surfaces of the ferroelectric pellets by a at corona discharge provide partial electric fields on the surfaces of the ferroelectric pellets, which could generate surface corona discharges on the ferroelectric pellets. This system utilizes both the surface discharges on the ferroelectric pellet barrier and the corona discharge between wire electrodes. As a result, in the case of the corona discharge with the ferroelectric pellet barrier, the mean corona current and ozone generation increase greatly, and the surface discharges on the ferroelectric pellets can be generated efficiently. It is also found that, the ferroelectric pellet barrier discharge reactor had better discharge characteristics for plasma generation than the wire-to-wire discharge reactor without pellets.

  • PDF

$NO_x$Removal by using Double Barrier Discharge (이중베리어방전을 이용한 $NO_x$ 제거)

  • Kim, Dong-Uk;Jeong, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.37-43
    • /
    • 2000
  • In this experimental study we proposed the double dielectric barrier discharge (DDBD) reactor to produce as high an electric field as possible. The experiment are conducted for applied voltage from 15 to 20[kV], $1~4[\ell/min]$ of gas flow rate and 120[Hz] and 240[Hz] of pulse rate. Superposition discharge(SPD) generated in DDBD which combined the surface discharge with the silence discharge was the most effective to reduce the $NO_x$. In the decomposition efficiency per watt, the low pulse rate gave better efficiency than the high pulse rate. However in DeNOx rate, the high pulse rate gave better performance than the low pulse rate. $NO_x$ removal rate and efficiency increased with increasing the applied voltage in all reactors.

  • PDF

Development of the Dielectric Barrier Discharge Plasma Generator for the Eco-friendly Cleaning Process of the Electronic Components (전자부품의 친환경 세정공정 적용을 위한 유전체장벽 방전 플라즈마 생성 장치 개발)

  • Son, Young-Su;Ham, Sang-Yong;Kim, Byung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1217-1223
    • /
    • 2011
  • In this paper, the dielectric barrier discharge plasma generator has been studied for producing of the high concentration ozone gas. Proposed plasma generator has the structure of extremely narrow discharge air gap(0.15mm) in order to realize the high electric field discharge. We investigate the performance of the dielectric barrier discharge plasma generator experimentally and the results show that the generator has very high ozone concentration characteristics of 13.7[wt%/$O_2$] at the oxygen flow rate of 1[${\ell}$/min] of each discharge cell. So, we confirmed that the proposed plasma generator is suitable for the high concentration ozone production facility of the eco-friendly ozone functional water cleaning system in the electronic components cleaning process.

Study on Characteristics of DBD Plasma Actuator as Design Parameters for Plasma Flow Control (플라즈마 유동제어를 위한 DBD 플라즈마 액츄에이터의 설계변수에 따른 특성 연구)

  • Yun, Su-Hwan;Kwon, Hyeok-Bin;Kim, Tae-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.492-498
    • /
    • 2012
  • Characteristics of DBD(Dielectric Barrier Discharge) plasma actuator as design parameters were investigated for plasma flow control. Flow velocity and power consumption of the DBD plasma actuator were measured according to the design parameters such as discharge voltage and frequency, gap, width and length of electrode, and the thickness of dielectric barrier. The flow velocity and power consumption increased as the discharge voltage and frequency increased. As the electrode gap increased, the flow velocity increased with decreasing the power consumption, whereas high voltage was required for the plasma discharge. The flow velocity increased as the upper-electrode width decreased, and as the lower-electrode width increased at the constant power consumption. The performance of the DBD plasma actuator can be estimated at the given discharge and geometry conditions.

Efficient Simulation Method for Dielectric Barrier Discharge Load

  • Oleg, Kudryavtsev;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.188-196
    • /
    • 2004
  • The dielectric barrier discharge is recognized as one of the efficient methods of ultraviolet light generation and ozone production. As well, it is widely utilized for gaseous wastes neutralization and other technological processes in industry. This electrochemical reaction is electrically equivalent to a nonlinear capacitive load that represents some difficulties for designing the power supply. Therefore, a conventional power supply is designed for a drastically simplified model of the load and generally is not optimal. This paper presents a fast simulation approach for the nonlinear capacitive model representation of the dielectric barrier discharge load lamp. The main idea of the proposed method is to use analytical solutions of the differential state equations for the load and find the unknown initial conditions for the steady state by an optimization method. The derived expressions for the analytical solutions are rather complicated, however they greatly reduce the calculation time, which make sense when a deeper analysis is performed. This paper introduces the proposed simulation method and gives some examples of its application such as estimation of the load equivalent parameters and load matching conditions.

Characteristics of Collection Efficiency for Electrostatic Precipitator Using Dielectric Barrier Discharge Reactor (DBD(Dielectric Barrier Discharge) 반응기를 사용한 전기 집진기에서의 집진 효율 특성)

  • 강석훈;변정훈;지준호;황정호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.449-450
    • /
    • 2002
  • DBD (Dielectric Barrier Discharge)를 사용한 저온 플라즈마 기술은 오래 전부터 효과적인 오조나이저로서 연구되고 있으며 현재에는 반응기를 이용한 NOx와 SOx, VOCs 와 같은 유해 가스를 분해, 제거에 관한 많은 연구가 진행되고 있다. 그러나 DBD 반응기내의 높은 전자 밀도와 에너지를 이용하여 입자를 대전시켜 전기 집진기 등을 이용하여 제거하는, 입자상 물질 처리에 관한 연구는 아직까지 미흡하다. (중략)

  • PDF

Characteristics of the Reduction of Fine Particles in an Indoor Air Cleaner Using Electrostatic Precipitation Technique (전기집진기형 공기청정기의 미세 먼지 저감 특성에 관한 연구)

  • Mok, Young-Sun;Lee, Ho-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2004
  • An indoor air cleaner consisting of a dielectric barrier discharge system and an electrostatic precipitator (ESP) was experimentally investigated. The function of the dielectric barrier discharge is to precharge particles by producing nonthermal plasma before indoor air enters ESP, leading to an enhancement in dust collection efficiency. The dependence of particle size distribution on the plasma discharge was examined to understand the mechanism of the particle precharging. The plasma discharge was found to increase the electrical force of the particles, rather than agglomerate them. Coarse particles in the range of 0.5 to $5.0{\mu}m$ were observed to be easily collected by this indoor air cleaner, and the present study laid emphasis on the removal of fine particles of $0.3{\mu}m$. The collection efficiency of the fine particles was largely enhanced by the plasma discharge.

  • PDF