• Title/Summary/Keyword: bark pH

Search Result 156, Processing Time 0.026 seconds

Study on the Removal of Heavy Metal Ion by Bark (수피(樹皮)를 이용(利用)한 중금속오염제거(重金屬汚染除去)에 관(關)한 연구(硏究))

  • Choi, Byoung-Dong;Jun, Yang;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.9-14
    • /
    • 1984
  • The removal and readsorption effects of pine and oak bark grown in Korea on water pollution caused by heavy metal ions have been investigated. Bark saturated with heavy metal ions is refleshed with 0.1 N ammonium acetate and then its readsorption has been done. The results obtained are as follows: 1. Adsorption effect of pine bark is similiar to that of oak bark, and 20-40 meshed bark gives the best results. 2. 0.1 N amonium acetate of pH 7 shows more elutriative than the others such as pH 3 hydrochloric acid, pH 10 ammonium hydroxide and pH 7 water. 3 Pine bark refleshed with 0.1 N ammonium acetate gets two times as effective in adsorption as raw bark, and shows more effective than oak bark.

  • PDF

pH and Cation Exchange Capacity of Major tree Barks grown in Korea -Genus Pinus, Populus, and Quercus- (한국산(韓國産) 주요수피(主要樹皮)의 pH와 C.E.C -소나무속, 사시나무속, 참나무속-)

  • Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.3-7
    • /
    • 1979
  • A bark comprises about 10 to 20 percents of a typical log by volume, and is generally considered as an unwanted residue rather than a potentially valuable resources. As the world has been confronted with decreasing forest resources, natural resources pressure dictate that a bark should be a raw material instead of a waste. The utilization of the largely wasted bark of genus Pinus, Quercus and Populus grown in korea can be enhanced by Knowing its chemical Properties. Specially, uses of bark in mulching, growing media and soil amendment can be enhanced by knowing pH and C.E.C values. In this paper, an investigative study is carried out on the pH-and C.E.C-values. The results may be summarized as follows: 1. Bark is acid in nature, and pH values of bark varying from 3.3 to 4.7, is lower than that of wood.pH value of Pinus is the lowest. 2. Cation exchange capacity of bark is greater than that of wood, silt loam soil, and wheat straw.CEC of bark is 45.7 meq/100gm in Pinus, 41.8 meq/100gm in populus, 37.8 meq/100gm in Quercus.

  • PDF

Use of Cork Oak Bark for Phosphorous Removal from Wastewater (폐수의 인산염 제거를 위한 굴참나무수피의 활용)

  • Yang, Kyung Min;Kim, Yeong Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.113-119
    • /
    • 2009
  • The feasibility of using cork oak bark for phosphorus removal from wastewater was evaluated in this study. Recently, development of more cost-effective media while maintaining high efficiency in pollutants removal has received concern. Barks have a negative surface charge and, hence, tend to show a high affinity to bind cations, and they need to undergo chemical modification to increase their adsorption capacity of anions. Bark was hydrolyzed by HCl solution and it received modification using an aqueous solution of high molecular weight polyethylenimine(PEI). Surface modification with HCl and PEI resulted in a decrease of specific surface area of the bark from $1.932 m^2/g$ to $1.094 m^2/g$. The adsorption experiments were carried out in batch tests and the data were fitted to the Langmuir isotherm and Freundlich isotherm equations. Phosphate removal rate was higher at the lower solution pH possibly due to the form of phosphate ion in solution. For the initial phosphate concentration of 10 mg/L, maximum adsorption was 20.88 mg P/g at pH 3 and 12.02 mg P/g at pH 5. Mechanism of phosphorus sorption onto the HCl-PEI bark was examined through FT-IR spectrometer. Ion exchange between $NH^+$ and $H_2PO_4{^-}$ appeared to be a key mechanism of phosphate adsorption onto the HCl-PEI bark surface.

Studies on Utilization of Bark by Carbonization (수피의 탄화이용에 관한 연구)

  • Kim, Byung-Ro;Lee, Jae-yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.40-51
    • /
    • 2006
  • The objective of this research is to analyze a possibility for the utilization of carbonized bark and develop the technique for carbonization of bark for using as the adsorbent, the soil improvement agent, the carrier for microbial activity, health products, and so on. The properties of bark charcoals such as methylenehlue adsorption (MBA), equilibrium moisture content (EMC), far infra rad emissivity, pH, water retention and caloric value were analyzed. The MBA values of bark charcoals carbonized for 8 hr of carbonization time at $800^{\circ}C$ of carbonization temperature for Larix leptolepis, Pinus koraiensis, Pinus rigida were greater than 110 mg/g. The bark charcoals pH values of all three species that were carbonized for 4 hr of carbonization time at $400^{\circ}C$ of carbonization temperature was 6.6 and carbonized for 4 hr at 600 and $800^{\circ}C$ was about 9. Therefore the bark charcoals of those species could be used as charcoals if the carbonization temperature and time were controlled.

Dyeability and Antibacterial Activity of the Fabrics with Elm-Bark Extracts (느릅나무 껍질 추출액에 의한 섬유의 염색성 및 항균성)

  • 최영희;권오경;문제기
    • Textile Coloration and Finishing
    • /
    • v.15 no.3
    • /
    • pp.140-145
    • /
    • 2003
  • The purpose of this study is searching the Elm-Bark dyes' dyeability and antibacterial activities according to the dyeing time, pH, a mordant and the method of mordancy. We used two kinds of Elm-Bark dyes which's extracted by the Electrolytic reduction water and Distilled water. Silk fabric and Cotton/nylon union fabric was used for this study. The results are as follow. K/S value is increased according to the dyeing time and the suitable pH level is pH 3. Dyeability is good with Iron(II) sulfate$(FeSO_4\cdot{7H}_2O)$ on the pre-mordancy and Potassium dichromate$(K_2Cr_2O_7)$ on the post-mordancy. The Elm-Bark dyes by the Electrolytic reduction water has good colorfastness more than by the Distilled water. Antibacterial activities is excellent and the ratio is over than 99.5%.

Relationships between Air Pollution by SO2 and Soluble Sulphur Contents in the Leaves and Bark pH in Urban Forest Trees (도심지역(都心地域)의 아황산(亞黃酸) 가스에 의(依)한 대기오염(大氣汚染)과 수목내(樹木內) 엽(燁)의 수용성(水溶性) 유황(硫黃) 함량(含量) 및 수피산도(樹皮酸度)와의 관계(關係))

  • Cha, Youn Jung;Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.3
    • /
    • pp.279-286
    • /
    • 1991
  • This study was carried out to investigate relationships between atmospheric $SO_2$ concentration and both soluble sulphur contents in the tree leaves and bark pH to test the possibility of using them as bioindicators for air pollution. Mt. Kwanak, Mt. Nam, Mt. Bukhan (located in Seoul) and Mt. Paldal (located in Suwon, Kyonggi-do) as polluted areas and Pyongchang, Kwangwon-do as an unpolluted area were selected for this study. Soluble sulphur contents in the leaves and hark pH of two tree species (Pines densiflora S. et Z. and Quercus mongolica Fisch.) were analyzed in May, August, and October, 1990 by $BaSO_4$ precipitation method and pH measurement, respectively. In both species, concentration of soluble sulphur in the leaves increased with increasing concentration of atmospheric $SO_2$ (correlation coefficient : 0.52). Soluble sulphur contents in the 2-year-old needles of Pines densiflora (0.170%) and current year leaves of Quercus mongolica (0.081%) in Mt. Nam in the center of Seoul were higher than those in unpolluted Pyongchang area (0.023% and 0.034%, respectively). Bark pH decreased with increasing atmospheric $SO_2$ concentration (correlation coefficient : -0.52). Bark pH of P. densiflora (pH 3.42) and Q. mongolica (pH 3.63) in Mt. Nam were lower than those in Pyongchang area (pH 3.94 and pH 4.93, respectively). Both soluble S content in the leaves and bark pH were recognized as suitable bioindicators for air pollution by $SO_2$. Especially, bark pH showed more sensitive response to air pollution by $SO_2$ than soluble S concentration in the leaves. The lowest concentration of soluble sulphur and the highest bark pH in August were considered to be due to heavy rain during the rainy season. Soluble S content in the leaves and bark pH were not significantly different at 5% level between the two species in polluted areas.

  • PDF

Efficacy of Cu(II) Adsorption by Chemical Modification of Pine Bark (소나무 수피의 화학적 처리에 의한 Cu(II) 흡착 효과)

  • Park, Se-Keun;Kim, Ha-Na;Kim, Yeong-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.930-937
    • /
    • 2007
  • Korean pine(Pinus densiflora) bark was evaluated for its adsorption capacity of Cu(II) ions from aqueous solution by running a series of batch experiments. Prior to the tests, the milled barks were treated with 1 N NaOH or 1 N HCl to examine the effect of surface modification. For comparison, untreated bark was tested under same condition. Within the tested pH range between 3 and 6, NaOH treatment increased Cu(II) adsorption capacity by $139\sim184%$, while HCl treatment decreased it by $37\sim42%$. Maximum copper ion uptake by bark was observed at pH $5\sim6$, but pH of solution was not a potent influence. A pseudo second-order kinetic model fitted well for the sorption of copper ion onto bark. For NaOH-treated bark, the calculated sorption capacity$(q_e)$ increased from 6.58 to 12.77 mg/g, while the equilibrium rate constant$(k_2)$ decreased from 0.284 to 0.014 g/mg/min as initial Cu(II) concentration doubled from 100 mg/L. A batch isotherm test using NaOH-treated bark showed that equilibrium sorption data were represented by both the Langmuir model and the Freundlich model. It was confirmed that carboxylic acid of bark was involved in the Cu(II) adsorption. For NaOH-treated bark, in particular, carboxylate ion produced by hydrolysis or saponification appeared to be a major functional roup responsible for the enhanced Cu(II) sorption.

Solid Bioenergy Properties of Paulownia tomentosa Grown in Korea

  • Qi, Yue;Yang, Chunmei;Hidayat, Wahyu;Jang, Jae-Hyuk;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.890-896
    • /
    • 2016
  • Paulownia tomentosa is one of fast-growing wood species in Korea. In order to evaluate the solid bioenergy properties of Paulownia tree, this study examined the heating value, moisture content (MC), pH and proximate analysis of stem, branch, root, bark and leaf. The heating values of wood parts were slightly higher than those of bark and leaf, and that of branch was the highest among all the samples. The higher moisture content of bark and leaf referred to their lower heating value. Also, the pH of stem, branch and root was similar and lower than those of bark and leaf. The ash content of bark and leaf was much higher than that of wood parts, which is the one of the reasons for effect on the lower heating value and higher pH. While, the volatile matter content (VMC) of bark and leaf was lower than those of wood parts. The bark showed the highest fixed carbon content (FCC), while the FCC of stem was the lowest among all the samples. The obtained results are encouraging that the Paulownia tree could be totally utilized as alternative fuels for bioenergy production.

A Study on the Leaf Acidity, Bark Acidity and Water Soluble Sulfur Contents of Pinus Koraiensis in Chuncheon and Cheongpyoung (강원대 학술림과 경춘가도(청평)변 잣나무 잎과 수피의 pH및 수용성 황함량에 관한 연구)

  • Lee Sang Deok;Kim Hong Ryul;Joo Yeoung Teuk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.190-195
    • /
    • 2004
  • This study investigated effects of water content in leaf, leaf acidity, bark acidity and water soluble sulfur contents by vehicle. The results were as follows: The average water content in Pinus Koraiensis leaves at Cheongpyoung and Chuncheon were 49% and 51 % respectively. The average leaf acidity and bark acidity at Cheongpyoung and Chuncheon were respectively pH 4.8 and pH 4.9 in leaf, pH 5.3 and 5.4 bark. The average water soluble sulfur content in leaves showed a significant difference between Cheongpyoung and Chuncheon of 0.133% and 0.053% respectively.

Conditions for the Extraction of Polyphenols from Radiata Pine (Pinus radiata) Bark for Bio-Foam Preparation

  • LEE, Min;JEONG, Su Hyeon;MUN, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.861-868
    • /
    • 2020
  • The use of polyphenol extracts from radiata pine (Pinus radiata) bark as raw materials for bio-foams was investigated along with the optimal NaOH extraction conditions. The targeted yield of alkaline extracts was 60%, and the targeted pH was 11 to 12. The radiata pine bark was composed of 70% of a 1% NaOH extract, which contained mainly polyphenols, such as proanthocyanidin (PA). As the particle size of the bark decreased, the yield of the 1% NaOH extracts increased from 57 to 87%. A range of NaOH concentrations, liquor ratios, and extraction times were explored to establish an economic polyphenol extraction method. More than 60% of the alkaline extract was extracted, and the pH of the extract was approximately 12 when the optimum extraction conditions were employed, i.e., a liquor to bark ratio of 5:1, a NaOH dosage of 17 to 18% based on the bark weight, and a 1 h extraction time. Following neutralization of the alkaline extract, structural analysis indicated severe structural changes in the PA during the alkaline extraction. Because the alkaline extract was barely soluble in the solvent used for the structural analyses, it is assumed that chemical modification is required to increase the solubility of the alkaline extract for the production of bio-foams.