• Title/Summary/Keyword: bandgap

Search Result 643, Processing Time 0.034 seconds

Photonic Bandgap Bragg Fibers: A New Platform for Realizing application-specific Specialty Optical Fibers and Components

  • Pal, Bishnu P.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.87-88
    • /
    • 2006
  • Bragg fibers, consisting of a low index core (including air) surrounded by a series of periodic layers of alternate high and low refractive index materials, each being higher than that of the core, form a 1D photonic bandgap (PBG). In view of the multitude of individual physical parameters that characterize a Bragg fiber, they offer a wide choice of parametric avenues to tailor their propagation characteristics. Owing to their unique PBG guidance mechanism, Bragg fibers indeed exhibit unusual dispersion characteristics that are otherwise nearly impossible to achieve in conventional silica fibers. Solid core Bragg fibers, amenable to fabrication by the highly mature MCVD technology, could be designed to realize broadband supercontinuum light. This talk would review our recent works on modeling of propagation characteristics, dispersion tailoring in them for applications as metro as well as dispersion compensating fibers and also as supercontinuum light generators.

  • PDF

Low-Phase Noise Dual-band VCO Using PBG Structure (Photonic Bandgap 구조를 이용한 저 위상잡음 듀얼밴드 VCO에 관한 연구)

  • 조용기;서철헌
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.2
    • /
    • pp.53-58
    • /
    • 2004
  • In this paper, the low-phase dual-band VCO, by adding switching circuit with PIN diode at feedback loop of the oscillation part having negative-resistance, is realized. In order to reduce the phase noise of the VCO, PBG structure applied to the ground plane of the resonator. When applying for PBG structure, output power is -9.17㏈m and phase noise is -102㏈c/Hz at 5.25㎓, output power is -5.17㏈m and phase noise is -101㏈c/Hz at 1.8㎓, respectively.

High efficiency deep blue phosphorescent organic light emitting diodes using a phenylcarbazole type phosphine oxide as a host material

  • Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.188-191
    • /
    • 2009
  • A high efficiency deep blue phosphorescent organic light-emitting diode (PHOLED) was developed using a new wide triplet bandgap host material (PPO1) with a phenylcarbazole and a phosphine oxide unit. The wide triplet bandgap host material was synthesized by a phosphornation reaction of 2-bromo-Nphenylcarbazole with chlorodiphenylphosphine. A deep blue emitting phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine)iridium (FCNIr), was doped into the PPO1 host and a high quantum efficiency of 17.1 % and a current efficiency of 19.5 cd/A with a color coordinate of (0.14,0.15) were achieved in the blue PHOLED. The quantum efficiency of the deep blue PHOLED was better than any other quantum efficiency value reported up to now.

  • PDF

Multi-stack Technique for a Compact and Wideband EBG Structure in High-Speed Multilayer Printed Circuit Boards

  • Kim, Myunghoi
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.903-910
    • /
    • 2016
  • We propose a novel multi-stack (MS) technique for a compact and wideband electromagnetic bandgap (EBG) structure in high-speed multilayer printed circuit boards. The proposed MS technique efficiently converts planar EBG arrays into a vertical structure, thus substantially miniaturizing the EBG area and reducing the distance between the noise source and the victim. A dispersion method is presented to examine the effects of the MS technique on the stopband characteristics. Enhanced features of the proposed MS-EBG structure were experimentally verified using test vehicles. It was experimentally demonstrated that the proposed MS-EBG structure efficiently suppresses the power/ground noise over a wideband frequency range with a shorter port-to-port spacing than the unit-cell length, thus overcoming a limitation of previous EBG structures.

Bandwidth Enhancement for SSN Suppression Using a Spiral-Shaped Power Island and a Modified EBG Structure for a ${\lambda}$/4 Open Stub

  • Kim, Bo-Bae;Kim, Dong-Wook
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.201-208
    • /
    • 2009
  • This paper proposes a spiral-shaped power island structure that can effectively suppress simultaneous switching noise (SSN) when the power plane drives high-speed integrated circuits in a small area. In addition, a new technique is presented which greatly improves the resonance peaks in a stopband by utilizing ${\lambda}$/4 open stubs on a conventional periodic electromagnetic bandgap (EBG) power plane. Both proposed structures are simulated numerically and experimentally verified using commercially available 3D electromagnetic field simulation software. The results demonstrate that they achieve better SSN suppression performance than conventional periodic EBG structures.

  • PDF

Miniaturized Bandstop Filter Using Meander Spurline and Capacitively Loaded Stubs

  • Liu, Haiwen;Knoechel, Reinhard H.;Schuenemann, Klaus F.
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.614-618
    • /
    • 2007
  • A miniaturized bandstop filter (BSF) is introduced in this paper. The filter consists of one meander spurline and a pair of capacitively loaded stubs. The meander spurline with low resonant frequency and improved slow-wave factor exhibits excellent resonant bandgap characteristics which can be modeled by a longitudinally coupled resonator. The design of the proposed microstrip BSF is presented, and its performance is measured. Measurements show that there is a stopband from 2.3 to 5.6 GHz with $S_{21}$ less than -20 dB. The total length of this BSF equals 23 mm.

  • PDF

Wide bandgap III-nitride semiconductors: opportunities for future optoelectronics

  • Park, Yoon-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2002
  • The world at the end of the $20^{th}$ Century has become "blue" Indeed, this past decade has witnessed a "blue rush" towards the development of violet-blue-green light emitting diodes (LEDs) and laser diodes (LDs) based on wide bandgap III-Nitride semiconductors. And the hard work has culminated with, first, the demonstration of commercial high brightness blue and green LEDs and of commercial violet LDs, at the very end of this decade. Thanks to their extraordinary properties, these semiconductor materials have generated a plethora of activity in semiconductor science and technology. Novel approaches are explored daily to improve the current optoelectronics state-of-the-art. Such improvements will extend the usage and the efficiency of new light sources (e.g. white LEDs), support the rising information technology age (e.g. high density optical data storage), and enhance the environmental awareness capabilities of humans (ultraviolet and visible photon detectors and sensors). Such opportunities and many others will be reviewed in this presentation.

Design of Power Plane for Suppressing Spurious Resonances in High Speed PCBs

  • Oh Seung-Seok;Kim Jung-Min;Yook Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.62-70
    • /
    • 2006
  • This paper presents a new power plane design method incorporating a single geometry derived from a unit cell of photonic bandgap(PBG) structure. This method yields constantly wide suppression of parallel plate resonances from 0.9 GHz to 4.2 GHz and is very efficient to eliminate PCB resonances in a specified frequency region to provide effective suppression of simultaneous switching noise(SSN). It is shown that with only two cells the propagation of unwanted high frequency signals is effectively suppressed, while it could provide continuous return signal path. The measured results agree very well with theoretically predicted ones, and confirm that proposed method is effective for reducing EMI, with measured near-field distribution. The proposed topology is suitable for design of high speed digital system.

Design of Temperature Stable Pulse Width Modulation Circuit Using CMOS Process Technology (CMOS 공정을 이용하는 동작온도에 무관한 펄스폭 변조회로 설계)

  • Kim, Do-Woo;Choi, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.186-187
    • /
    • 2007
  • In this work, a temperature stable PWM(Pulse width modulation) circuit is proposed. The designed PWM circuit has a temperature dependent current source and a temperature independent voltage to compensate electrical characteristics with operating temperature. The variation of driving current is from about 4% to -6% in the temperature range $0^{\circ}C\;to\;70^{\circ}C$ compared to the current at the room temperature. The variation of bandgap voltage reference is from about 1.3% to -0.2% with temperature when the supply voltage is 3.3 volts. From simulation results, the variation of output pulse width is less than from 0.86% to -0.38% in the temperature range $0^{\circ}C\;to\;70^{\circ}C$.

  • PDF

Systematic Analysis of Bandgap Evolution of Conjugated Polymers

  • Hong, Sung Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.845-850
    • /
    • 1995
  • A systematic method is presented to analyze the bandgaps of conjugated polymers in terms of geometrical relaxations and electronic effect of moieties using the equation of Eg=ΔEδr + ΔE1-4 + ΔEel. The relationship between ΔEδr and δr is derived from trans-PA and is transferred to other conjugated polymeric systems. By applying this method to heterocyclic polymers, very useful information is obtained to understand the evolution of bandgaps of PT, PPy and PF in connection with the chemical structures and electronic effect of the heteroatoms. We believe that this method is very helpful to understand the evolution of bandgaps of various conjugated polymers in connection with the chemical structures and electronic effect of moieties. Also, the method is expected to provide valuable information to design a small bandgap polymers.