• Title/Summary/Keyword: band-ratio

Search Result 1,446, Processing Time 0.038 seconds

An Adaptive FIHS Fusion Using Spatial and Spectral Band Characteristics of Remote Sensing Image (위성 영상의 공간 및 분광대역 특성을 활용한 적응 FIHS 융합)

  • Seo, Yong-Su;Kim, Joong-Gon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.125-135
    • /
    • 2009
  • Owing to its fast computing capability for fusing images, the FIHS(Fast Intensity Hue Saturation) fusion is widely used for fusion purposes. However, the FIHS fusion also distorts color in the same way such as the IHS(Intensity Hue Saturation) fusion technique. In this paper, a FIHS fusion technique(FIHS-BR) which reduces color distortion by using the ratio of each spectral band and an adaptive FIHS fusion(FIHS-SABR) using spatial information and the ratio of each spectral band are proposed. The proposed FIHS-BR fusion reduces color distortion by adding different spatial detail improvement values for each spectral band. The spatial detail improvement values are derived from the ratio of spectral band. And the proposed FIHS-SABR fusion reduces more color distortion by readjusting the spatial detail improvement values for each spectral band according to the ratio of the spectral bands. The spatial detail improvement values are derived adaptively from the characteristics of spatial information of the local image. To evaluate the performance of the proposed FIHS-BR fusion and FIHS-SABR fusion, a computer simulation is performed for IKONOS remote sensing image. Results from the experiments show that the proposed methods have less color distortion for the forest regions which reveal severe color distortion in the traditional FIHS fusion. From the evaluation results of the characteristics of spectral information for fused image, we show that the proposed methods have best results.

  • PDF

Characteristics of Chlorophyll a Absorption in Case 2 Water for Using Remote Sensing Data

  • Islam, Monirul;Sado, Kimiteru
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1-3
    • /
    • 2003
  • In this study, spectroradiometer data were coupled with fluorometer data to find out the best suited bands ratio to monitor the chlorophyll a concentration for inland water. Remote sensing reflectance measurements were used to evaluate the performance of several default ocean color chlorophyll algorithms for SeaWiFS data. This study shows that the chlorophyll a concentration from fluorometer and reflectance from spectroradiometer lies in exploiting the signal provided by the chlorophyll a red absorption peak near 670nm. Two-band ratio based on a ratio of reflectance 670 and 700nm provided a good correlation for a linear model, compare with blue-green two band ratio.

  • PDF

Multi frequency band noise suppression system using signal-to-noise ratio estimation (신호 대 잡음비 추정 방법을 이용한 다중 주파수 밴드 잡음 억제 시스템)

  • Oh, In Kyu;Lee, In Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.102-109
    • /
    • 2016
  • This paper proposes a noise suppression method through SNR (Singal-to Noise Ratio) estimation in the two microphone array environment of close spacing. The conventional method uses a noise suppression method for a gain function obtained through the SNR estimation based on coherence function from full band. However, this method cause performance decreased by the noise damage that affects all the feature vector component. So, we propose a noise suppression method that allocates a frequency domain signal into N constant multi frequency band and each frequency band gets a gain function through SNR estimation based on coherence function. Performance evaluation of the proposed method is shown by comparison with PESQ (Perceptual Evaluation of Speech Quality) value which is an objective quality evaluation method provided by the ITU-T (International Telecommunications Union Telecommunication).

The Meaning of P50 Suppression : Interaction of Gamma and Alpha Waves

  • Lee, Kyungjun;Kang, Ung Gu
    • Korean Journal of Biological Psychiatry
    • /
    • v.21 no.4
    • /
    • pp.168-174
    • /
    • 2014
  • Objectives Sensory gating dysfunctions in patients with schizophrenia and bipolar disorder have been investigated through two similar methods ; P50 suppression and prepulse inhibition paradigms. However, recent studies have demonstrated that the two measures are not correlated but rather constitute as distinct neural processes. Recent studies adopting spectral frequency analysis suggest that P50 suppression reflects the interaction between gamma and other frequency bands. The aim of the present study is to investigate which frequency component shows more significant interaction with gamma band. Methods A total of 108 mood disorder patients and 36 normal subjects were included in the study. The P50 responses to conditioning and test stimuli with an intra-pair interval of 500 msec were measured in the study population. According to P50 ratio (amplitude to the test stimulus/amplitude to the conditioning stimulus), the subjects with P50 ratio less than 0.2 were defined as suppressed group (SG) ; non-suppressed group (NSG) consisted of P50 ratio more than 0.8. Thirty-five and 25 subjects were included in SG and NSG, respectively. Point-to-point correlation coefficients (PPCCs) of both groups were calculated between two time-windows : the first window (S1) was defined as the time-window of one hundred millisecond after the conditioning auditory stimulus and the second window (S2) was defined as the time-window of 100 msec after the test auditory stimulus. Spectral frequency analysis was performed to investigate which frequency band results in the difference of PPCC between SG and NSG. Results Significant reduction of PPCC between S1 and S2 was observed in the SG (Pearson's r = 0.24), compared to PPCC of the NSG (r = 0.58, p < 0.05). In spectral frequency analysis, gamma band showed "phase-reset" and similar responses after the two auditory stimuli in suppressed and non-suppressed group. However in the case of alpha band, comparison showed significantly low PPCC in SG (r = -0.14) compared to NSG (r = 0.36, p < 0.05). This may be reflecting "phase-out" of alpha band against gamma band at approximately 50 msecs after the test stimulus in the SG. Conclusions Our study suggests that normal P50 suppression is caused by phase-out of alpha band against gamma band after the second auditory stimulus. Thus it is demonstrated that normal sensory gating process is constituted with attenuated alpha power, superimposed on consistent gamma response. Implications of preserved gamma and decreased alpha band in sensory gating function are discussed.

Cramer-Rao Lower Bound of Effective Carrier-to-noise Power Ratio Estimation for a GPS L1 C/A Signal under Band-limited White Noise Jamming Environments (대역제한 백색잡음 재밍환경에서 GPS L1 C/A 신호를 위한 유효 반송파 대 잡음 전력비 추정치의 CRLB)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.890-894
    • /
    • 2014
  • In this paper, we derive the CRLB (Cramer-Rao Lower Bound) of effective carrier-to-noise power ratio ($C/N_0$) estimation for a GPS (Global Positioning System) L1 C/A (Coarse/Acquisition) signal under band-limited white noise jamming environments. The quality of a received GPS signal is commonly described in terms of its $C/N_0$, implying that the noise is white and thus can be described by scalar noise density. However, if some intentional interference is received to a victim GPS receiver, then the $C/N_0$ is no longer the efficacious performance indicator. The correct and straightforward measurement to analyze the receiving situation is the effective $C/N_0$. In this paper, we consider a band-limited white noise jamming whose bandwidth is 2MHz and is the same as one of the first null-to-null bandwidth of the GPS L1 C/A signal.

Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes

  • Obasogie, Oyema E.;Abdulkareem, Ambali S.;Mohammed, Is'haq A.;Bankole, Mercy T.;Tijani, Jimoh. O.;Abubakre, Oladiran K.
    • Carbon letters
    • /
    • v.28
    • /
    • pp.72-80
    • /
    • 2018
  • In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on $CaCO_3$ was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature ($700^{\circ}C$), time (55 min), argon flow rate ($230.37mL\;min^{-1}$) and acetylene flow rate ($150mL\;min^{-1}$) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.

The Removal of Noisy Bands for Hyperion Data using Extrema (극단화소를 이용한 Hyperion 데이터의 노이즈 밴드제거)

  • Han, Dong-Yeob;Kim, Dae-Sung;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.275-284
    • /
    • 2006
  • The noise sources of a Hyperion image are mainly due to the atmospheric effects, the sensor's instrumental errors, and A/D conversion. Though uncalibrated, overlapping, and all deep water absorption bands generally are removed, there still exist noisy bands. The visual inspection for selecting clean and stable processing bands is a simple practice, but is a manual, inefficient, and subjective process. In this paper, we propose that the extrema ratio be used for noise estimation and unsupervised band selection. The extrema ratio was compared with existing SNR and entropy measures. First, Gaussian, salt and pepper, and Speckle noises were added to ALI (Advanced Land Imager) images with relatively low noises, and the relation of noise level and those measures was explored. Second, the unsupervised band selection was performed through the EM (Expectation-Maximization) algorithm of the measures which were extracted from a Hyperion images. The Hyperion data were classified into 5 categories according to the image quality by visual inspection, and used as the reference data. The experimental result showed that the extrema ratio could be used effectively for band selection of Hyperion images.

Effects of optical properties in hydrogenated amorphous silicon germanium alloy solar cells (a-SiGe solar cell의 광학적 특성)

  • Baek, Seungjo;Park, Taejin;Kim, Beomjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.67.1-67.1
    • /
    • 2010
  • Triple junction solar cell을 위한 a-SiGe middle cell의 조건별 광학적 특성에 관한 연구를 실시하였다. a-SiGe I층은 GeH4 유량, 압력, H2 dilution ratio를 변화시켜 제조하였으며 전기적, 광학적 특성을 비교하여 최종적으로 선택된 조건을 triple junction solar cell에 적용하였다. a-SiGe I층은 Ge contents가 증가함에 따라 band gap은 감소하고 45% 이상의 조건에서는 700nm 전후 파장의 투과율이 감소하며, 압력이 감소함에 따라 band gap은 소폭 감소하나 700nm 전후 파장의 투과율은 증가하였다. 그리고 H2 ratio가 증가함에 따라 band gap은 소폭 감소하나 투과율에는 큰 변화가 없었다. 상기 결과를 바탕으로 최종적으로 선택된 조건에서 triple-junction solar cell을 제작하여 평가한 결과 초기 변환효율 9%의 결과를 얻었다.

  • PDF

Extrema-based Band Selection for Hyperion Data (극단화소 기반의 Hyperion 데이터 밴드선택)

  • Han Dong-Yeop;Kim Dae-Sung;Kim Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.193-198
    • /
    • 2006
  • Among 242 Hyperion bands, there are 46 bands that contain completely no information and some other bands with various kinds of noise. It is mainly due to the atmosphenc absorption and the low signal-to-noise ratio. The visual inspection for selecting clean and stable bands is a simple practice, but is a manual, inefficient, and subjective Process. Though uncalibrated, overlapping, and all deep water absorption bands are removed, there still exist noisy bands. In this paper, we propose that the extrema ratio be measured for noise estimation and the unsupervised band selection be performed using the Expectation-Maximization algorithm. The Hyperion data were classified into 5 categories according to the image quality by visual inspection, and used as the reference data. The accuracy of the proposed method was compared with signal-to-noise ranking and entropy ranking. As a result, the proposed mettled was effective as preprocessing step for band selection.

  • PDF

Low Spurious Image Rejection Mixer for K-band Applications

  • Lee, Moon-Que;Ryu, Keun-Kwan;Kim, Hyeong-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.272-275
    • /
    • 2004
  • A balanced single side-band (SSB) mixer employing a sub-harmonic configuration is designed for up and down conversions in K-band. The designed mixer uses anti-parallel diode (APD) pairs to effectively eliminate even harmonics of the local oscillator (LO) spurious signal. To reduce the odd harmonics of LO at the RF port, we employ a balanced configuration for LO. The fabricated chip shows 12$\pm$2dB of conversion loss and image-rejection ratio of about 20dB for down conversion at RF frequencies of 24-27.5GHz. As an up-conversion mode, the designed chip shows 12dB of conversion loss and image-rejection ratio of 20 ~ 25 dB at RF frequencies of 25 to 27GHz. The odd harmonics of the LO are measured below -37dBc.