• Title/Summary/Keyword: band-gap energy

Search Result 705, Processing Time 0.028 seconds

Empirical relationship between band gap and synthesis parameters of chemical vapor deposition-synthesized multiwalled carbon nanotubes

  • Obasogie, Oyema E.;Abdulkareem, Ambali S.;Mohammed, Is'haq A.;Bankole, Mercy T.;Tijani, Jimoh. O.;Abubakre, Oladiran K.
    • Carbon letters
    • /
    • v.28
    • /
    • pp.72-80
    • /
    • 2018
  • In this study, an empirical relationship between the energy band gap of multi-walled carbon nanotubes (MWCNTs) and synthesis parameters in a chemical vapor deposition (CVD) reactor using factorial design of experiment was established. A bimetallic (Fe-Ni) catalyst supported on $CaCO_3$ was synthesized via wet impregnation technique and used for MWCNT growth. The effects of synthesis parameters such as temperature, time, acetylene flow rate, and argon carrier gas flow rate on the MWCNTs energy gap, yield, and aspect ratio were investigated. The as-prepared supported bimetallic catalyst and the MWCNTs were characterized for their morphologies, microstructures, elemental composition, thermal profiles and surface areas by high-resolution scanning electron microscope, high resolution transmission electron microscope, energy dispersive X-ray spectroscopy, thermal gravimetry analysis and Brunauer-Emmett-Teller. A regression model was developed to establish the relationship between band gap energy, MWCNTs yield and aspect ratio. The results revealed that the optimum conditions to obtain high yield and quality MWCNTs of 159.9% were: temperature ($700^{\circ}C$), time (55 min), argon flow rate ($230.37mL\;min^{-1}$) and acetylene flow rate ($150mL\;min^{-1}$) respectively. The developed regression models demonstrated that the estimated values for the three response variables; energy gap, yield and aspect ratio, were 0.246 eV, 557.64 and 0.82. The regression models showed that the energy band gap, yield, and aspect ratio of the MWCNTs were largely influenced by the synthesis parameters and can be controlled in a CVD reactor.

ASA 프로그램을 이용한 박막태양전지 구조설계 최적화

  • Baek, Seung-Sin;Choe, Hyeong-Uk;Lee, Yeong-Seok;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.37-37
    • /
    • 2009
  • 박막태양전지는 p-i-n substrate형과 n-i-p substrate형 두가지구조로 제조된다. 각 layer에서 activation energy와 band gap energy를 ASA simulator를 통해 조절해보았다. Simulation결과 p-i-n substrate형에서 p-layer와 n-i-p substrate형 n-layer에서 동일하게 activation energy 0.2eV, band gap energy 1.80eV에 최고효율 나왔고 각각 10.07%, 10.17%의 최고효율을 구할 수 있었다. 최적화 과정을 통하여 같은 조건에서 p-i-n substrate형 보다 n-i-p substrate형이 보다 높은 효율을 낸다는 것을 알 수 있었으며 본 연구를 통해 각 구조의 차이를 알 수 있었고 이는 높은 효율의 박막태양전지 설계에 도움이 될 것 이다.

  • PDF

The effect of strain on the electronic properties of MoS2 monolayers

  • Park, Soon-Dong;Kim, Sung Youb
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.305-314
    • /
    • 2016
  • We utilize first-principles calculations within density-functional theory to investigate the possibility of strain engineering in the tuning of the band structure of two-dimensional $MoS_2$. We find that the band structure of $MoS_2$ monolayers transits from direct to indirect when mechanical strain is applied. In addition, we discuss the change in the band gap energy and the critical stains for the direct-to-indirect transition under various strains such as uniaxial, biaxial, and pure shear. Biaxial strain causes a larger change, and the pure shear stain causes a small change in the electronic band structure of the $MoS_2$ monolayer. We observe that the change in the interaction between molecular orbitals due to the mechanical strain alters the band gap type and energy.

Temperature dependence of photocurrent spectra for $AgInS_2$ epilayers grown by hot wall epitaxy

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.123-124
    • /
    • 2007
  • A silver indium sulfide ($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the liteniture. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The temperature dependence of the energy band gap of the $AgInS_2$ obtained from the photocurrent spectrum was well described by the Varshni's relation, $E_g(T)=\;E_g(0)\;eV-(7.78\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;116\;K\;K)$. Also, Eg(0) is the energy band gap at 0 K, which is estimated to be 2.036 eV at the valence band state A and 2.186 eV at the valence band state B.

  • PDF

Binding energy study from photocurrent signal in $CdIn_2Te_4$ crystal

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.376-376
    • /
    • 2010
  • The single crystals of p-$CdIn_2Te_4$ were grown by the Bridgman method without the seed crystal. From photocurrent measurements, it was found that three peaks, A, B, and C, correspond to the intrinsic transition from the valence band states of $\Gamma_7$(A), $\Gamma_6$(B), and $\Gamma_7$(C) to the conduction band state of $\Gamma_6$, respectively. The crystal field splitting and the spin orbit splitting were found to be 0.2360 and 0.1119 eV, respectively, from the photocurrent spectroscopy. The temperature dependence of the $CdIn_2Te_4$ band gap energy was given by the equation of $E_g(T)=E_g(0)-(9.43{\times}10^{-3})T^2/(2676+T)$. $E_g$(0) was estimated to be 1.4750, 1.7110, and 1.8229 eV at the valence band states of A, B, and C, respectively. The band gap energy of p-$CdIn_2Te_4$ at room temperature was determined to be 1.2023 eV.

  • PDF

Optical properties and thermodynamic function properties of undoped and Co-doped $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ Single Crystals ($Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}:Co^{2+}$ 단결정의 광학적 특성과 열역학 함수 추정)

  • Hyun, Seung-Cheol;Kim, Hyung-Gon;Kim, Duck-Tae;Park, Kwang-Ho;Park, Hyun;Oh, Seok-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.88-93
    • /
    • 2002
  • $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ and $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}:Co^{2+}$ + single crystals were grown by CTR method. The grown single crystals have defect chalcopyrite structure with lattice constant a= 5.5966A. c= 10.8042${{\AA}}$ for the pure. a= 5.6543${{\AA}}$. c= 10.8205${{\AA}}$ for the Co-doped single crystal. respectively. The optical energy band gap was given as indirect band gap. The optical energy band gap was decreased according to add of Co-impurity. Temperature dependence of optical energy band gap was fitted well to the Varshni equation. From this relation. we can deduced the entropy. enthalpy and heat capacity. Also. we can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_d$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

  • PDF

Growth and optical properties of undoped and Co-doped CdS single crystals (CdS 및 CdS:Co2+ 단결정의 성장과 광학적 특성)

  • Oh, Gum-kon;Kim, Nam-oh;Kim, Hyung-gon;Hyun, Seung-cheol;Park, hjung;Oh, Seok-kyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.137-141
    • /
    • 2002
  • CdS and $CdS:Co^{2+}$ single crystals were grown by CTR method using iodine as transport material. The grown single crystals have defect chalcopyrite structure with direct band gap. The optical energy band gap was decreased according to add of Co-impurity. We can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_d$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

The Growth Characteristics of ${\beta}\;-FeSi_2$ as IR-sensor Device for Detecting Pollution Material : The Usage of the Ferrocene-Plasma

  • Kim, Kyung-Soo;Jung, II-Hyun
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • As IR-sensor for detecting pollution material, the iron silicide has a fit band gap, high physicochemical stability at high temperature and good acid resistance. The growing film was formed with the Fe-Si bond and the organic compound because plasma resolved the injected precursors into various active species. In the Raman scattering spectrum, the Fe-Si vibration mode showed at 250 {TEX}$cm^{-1}${/TEX}. The FT-IR peak indicated that the various organic compounds were deposited on the films. The iron silicide was epitaxially grown to β-phase by the high energy of plasma. The lattice structure of films had [220]/[202] and [115]. The thickness of the films increased with the flow rate of silane. But rf-power increased with decreasing the thickness. The optical gap energy and the band gap were shown about 3.8 eV and 1.182∼1.194 eV. The band gap linearly increased and the formula was below: {TEX}$E_g^{dir}${/TEX}= 8.611×{TEX}$10^{-3}N_{D}${/TEX}+1.1775

  • PDF

A Parametric Study on Secondary Electron Emission from MgO

  • Yoon, Sang-Hoon;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.953-956
    • /
    • 2008
  • Using the theoretical model of Auger electron emission, effects of MgO properties which include band gap energy, escape probability, gas ion, and doping elements on the yield of secondary electron emission were examined. The results indicated that the band gap of MgO must be decreased and escape probability must be enhanced in order to increase the yield of secondary electrons from Xe ions and that may proved to be a critical for achieving high luminance efficacy in ac-PDPs.

  • PDF

Graphene과 h-BN 합성물의 band gap 계산을 통한 최대효율의 태양전지 구조연구

  • Kim, Gyeong-O;Lee, Min-Hwan
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.312-319
    • /
    • 2015
  • 본 연구에서는 전자구조 계산을 통해 태양전지의 소재로 적합한 Graphene과 h-BN의 합성물을 찾아내었다. 태양전지가 최대 효율을 가지려면 소재의 band gap이 약 1.2 eV이어야 하는데, 본 연구에서는 이러한 물질을 다수 찾아 내었고 이런 물질들의 특징을 분석하였다. carbon domain이 넓을수록 band gap이 작았고 carbon ring이 유지될수록 cohesive energy가 컸다. 이를 다시 적용하여 적합한 구조를 예상하였으며 이와 잘 맞는 계산결과를 얻었다.

  • PDF