한국전기전자재료학회 2010년도 하계학술대회 논문집

Binding energy study from photocurrent signal in CdIn₂Te₄ crystal

Kwangjoon Hong

Department of Physics, Chosun University, Kwangju 501-759, South Korea

Abstract: The single crystals of p-CdIn₂Te₄ were grown by the Bridgman method without the seed crystal. From photocurrent

measurements, it was found that three peaks, A, B, and C, correspond to the intrinsic transition from the valence band states of

 $\Gamma_7(A)$, $\Gamma_6(B)$, and $\Gamma_7(C)$ to the conduction band state of Γ_6 , respectively. The crystal field splitting and the spin orbit splitting were

found to be 0.2360 and 0.1119 eV, respectively, from the photocurrent spectroscopy. The temperature dependence of the CdIn₂Te₄

band gap energy was given by the equation of $E_s(T) = E_s(0) - (9.43 \times 10^{-3})T^2/(2676 + T)$. $E_s(0)$ was estimated to be 1.4750, 1.7110,

and 1.8229 eV at the valence band states of A, B, and C, respectively. The band gap energy of p-CdIn₂Te₄ at room temperature was

determined to be 1.2023 eV.

Key Words: p-CdIn₂Te₄ single crystals, Bridgman method, photocurrent, band gap energy

1. INTRODUCTION

Cadmium indium telluride (CdIn₂Te₄), which belongs to a chalcopyrite structure with space group S²₄-I4-, is an attractive material

because it is practically applicable to electro-optical devices.²⁻⁵ For these applications, it is of primary importance to grow high

quality crystals and to characterize the fundamental material parameters such as the band gap and its temperature dependence.

In this study, the single crystals of p-CdIn₂Te₄ were grown by the Bridgman method without the seed crystal. We also present the results of the temperature dependence of the p-CdIn₂Te₄ band gap energy obtained through PC spectroscopy. The valence band

splitting for electronic transitions restricted by a selection rule is also discussed

2. RESULTS AND DISCUSSION

The p-CdIn₂Te₄ single crystal was grown in a three-stage vertical electric furnace by using the Bridgman method without the seed

crystal¹. The carrier density and the Hall mobility of the p-CdIn₂Te₄ single crystal obtained at 300 K were 8.61 × 10¹⁷ cm⁻³ and 2.42

× 10² cm²/V sec, respectively. From the PC measurement, three peaks in the PC spectra were observed at the temperature range of

10 to 250 K. However, only two peaks at 300 K were obtained. This indicates that the electrons in the valence band are scattered

because of the mutual interaction of electrons caused by carrier concentration. The peaks A, B, and C obtained are the intrinsic

transitions from the valence band state of $\Gamma_7(A)$, $\Gamma_6(B)$, and $\Gamma_7(C)$ to the conduction band state of Γ_6 , respectively. The Δ_{cr} and Δ_{so} of

p-CdIn₂Te₄ obtained are 0.2360 eV and 0.1119 eV, respectively. The temperature dependence of the band gap energy is well

described by the equation of $E_g(T) = E_g(0) - (9.43 \times 10^{-3})T^2/(2676 + T)$. The $E_g(0)$ is estimated at 1.4750, 1.7110, and 1.8229 eV at

the valence band states of A, B, and C, respectively. The band gap energy of p-CdIn₂Te₄ obtained at room temperature is 1.2023 eV.

REFERENCES

¹ O. Madelung, in Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung

(Springer-Verlag, Berlin, 1985), Vol. 17h, p.124.

† corresponding author: Kwangjoon Hong, e-mail:kjhong@chosun.ac.kr:, Tel:062-230-6637

Address: Department of Physics, Chosun University

- 376 -