• Title/Summary/Keyword: band image

Search Result 1,013, Processing Time 0.027 seconds

Analysis of Radar Performance Requirements for VTS System Based on IALA Guidelines (IALA 가이드라인에 기반한 VTS 시스템을 위한 레이더 성능 요구사항 분석)

  • Kim, Byung-Doo;Lee, Byung-Gil
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.27-29
    • /
    • 2015
  • Based on IALA guidelines, the fundamental requirements of radar system for vessel traffic services are analyzed in this paper. target separation, target position accuracy, target track accuracy of X-band radar and recommended test conditions are analyzed. Also, in order to check if it satisfies the requirement of target position accuracy from IALA guideline, the test is carried out through processing of radar raw image acquired at VTS center.

  • PDF

Ultrasonic Flaw Detection in Composite Materials Using SSP-MPSD Algorithm

  • Benammar, Abdessalem;Drai, Redouane
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1753-1761
    • /
    • 2014
  • Due to the inherent inhomogeneous and anisotropy nature of the composite materials, the detection of internal defects in these materials with non-destructive techniques is an important requirement both for quality checks during the production phase and in service inspection during maintenance operations. The estimation of the time-of-arrival (TOA) and/or time-of-flight (TOF) of the ultrasonic echoes is essential in ultrasonic non-destructive testing (NDT). In this paper, we used split-spectrum processing (SSP) combined with matching pursuit signal decomposition (MPSD) to develop a dedicated ultrasonic detection system. SSP algorithm is used for Signal-to-Noise Ratio (SNR) enhancement, and the MPSD algorithm is used to decompose backscattered signals into a linear expansion of chirplet echoes and estimate the chirplet parameters. Therefore, the combination of SSP and MPSD (SSP-MPSD) presents a powerful technique for ultrasonic NDT. The SSP algorithm is achieved by using Gaussian band pass filters. Then, MPSD algorithm uses the Maximum Likelihood Estimation. The good performance of the proposed method is experimentally verified using ultrasonic traces acquired from three specimens of carbon fibre reinforced polymer multi-layered composite materials (CFRP).

Photoluminescence Characteristics of $Y_3Al_5O_{12}$:$Tb^{3+}$ nano-Phosphors by various reagents (반응제에 따른 $Y_3Al_5O_{12}$ : $Tb^{3+}$ 나노형광체의 발광 특성)

  • Kwak, Hyun-Ho;Kim, Se-Jun;Cha, Jae-Hyeok;Choi, Hyun-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.440-441
    • /
    • 2007
  • For this study, terbium-doped yttrium aluminum garnet (YAG:Tb) phosphor powders were prepared via the combustion process using the varous reagents. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscope(SEM), and photoluminescence (PL). Single-phase cubic YAG:Tb crystalline powder was obtained at $1000^{\circ}C$ by directly crystallizing it from amorphous materials, as determined by XRD techniques. The SEM image showed that the resulting YAG:Tb powders had uniform sizes and good homogeneity. The photoluminescence spectra of the YAG:Tb nanoparticles were investigated to determinethe energy level of electron transition related to luminescence processes. There were three peaks in the excited spectrum, and the major one was a broad band of around 274 nm. Also, the YAG:Tb nanoparticles showed two emission peaks in the range of 450~500 nm and 525~560 nm, respectively, and had maximum intensity at 545 nm.

  • PDF

Morphology-Based Homomorphic Filter for Contrast Enhancement of Mammographic Images (유방조영 영상의 대비개선을 위한 형체기반 호모몰픽필터)

  • Hwang, Hee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.522-527
    • /
    • 2010
  • In this paper, a new MBHF(Morphology-Based Homomorphic filter) is presented to enhance contrast in mammographic images. The MBH filtering is performed based on the morphological sub-bands, in which an image is morphologically decomposed. The filter is designed to have optimal gain and structuring element in each sub-band through differential evolution. Experimental results show that the proposed method improves the contrast in mammographic images such that an evaluation criterion, WPSNR(Weighted Peak Signal to Noise Ratio) which takes into account human visual system is increased compared with a wavelet-based Homomorphic filter.

Preliminary Results of Polarimetric Characteristics for C-band Quad-Polarization GB-SAR Images Using H/A/$\alpha$ Polarimetric Decomposition Theorem

  • Kang, Moon-Kyung;Kim, Kwang-Eun;Lee, Hoon-Yol;Cho, Seong-Jun;Lee, Jae-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.531-546
    • /
    • 2009
  • The main objective of this study is to analyse the polarimetric characteristics of the various terrain targets by ground-based polarimetric SAR system and to confirm the compatible and effective polarimetric analysis method to reveal the polarization properties of different terrain targets by the GB-SAR. The fully polarimetric GB-SAR data with HH, HV, VH, and VV components were focused using the Deramp-FFT (DF) algorithm. The focused GB-SAR images were processed by the H/A/$\alpha$ polarimetric decomposition and the combined H/$\alpha$ or H/A/$\alpha$ and Wishart classification method. The segmented image and distribution graphs in H/$\alpha$ plane using Cloude and Pottier's method showed a reliable result that this quad-polarization GB-SAR data could be useful to classified corresponding scattering mechanism. The H/$\alpha$-Wishart and H/A/$\alpha$-Wishart classification results showed that a natural media and an artificial target were discriminated by the combined classification, in particular, after applying multi-looking and the Lee refined speckle filter.

New Simple Decomposition Technique for Polarimetric SAR Images (완전편파 SAR영상의 새로운 영상 분해 기법)

  • Lee, Kyung-Yup;Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This paper proposes a new decomposition technique for polarimetric synthetic aperture radar (SAR) images. This new decomposition technique is based on the degree of polarization (DoP) and co-polarized phase-difference (CPD) of the measured polarimetric backscattering coefficients. This decomposition technique is compared with the existing three- and four-component decomposition techniques with the ALOS PALSAR full polarimetric L-band data acquired in 2009. It is shown that the new decomposition technique is better or comparable to the existing techniques for the study areas such as sea, bare soil, forest, and urban area.

Atmospheric Aerosol Detection And Its Removal for Satellite Data

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.379-383
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A highresolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-l/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

Investigation of the Effect of Wear Particles on the Acoustic Emission Signal (마모 입자가 음향방출신호에 미치는 영향에 관한 연구)

  • Han, Jae-Ho;Shin, Dong-Gap;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.317-322
    • /
    • 2019
  • In spite of progress in tribological research, machine component failure due to friction and wear has been reported frequently. This failure may lead to secondary damage that can cause huge expense for maintenance and repair. To prevent economic loss, it is important to detect and predict the initial failure point. In this sense, various researchers have been tried to develop Condition Monitoring (CM) method using Acoustic Emission (AE) generated while the materials undergo failure. In this study, effect of particles on friction and wear was investigated using the pin-on-plate friction test and AE signal was recorded with a band-width type AE sensor. The experiments were performed in dry and lubricant conditions using steel and glass as specimens. After the experiment, 3D laser microscope image was captured to evaluate the wear behavior quantitatively. The AE signal was analyzed in time-domain and frequency-domain. The amplitude was compared with the frictional results. The results of this study showed that particle generation accelerate wear, generate high magnitude AE signal and change the frequency characteristics of the signal. Also, lubricant condition test results showed low coefficient of friction, low wear rate, and low magnitude of AE signal compared to the dry condition. It is expected that the results of this study will aid in better assessment of wear in CM technology

InSAR-based Glacier Velocity Mapping in the Parlung Zangbo River Basin, Tibetan Plateau, China

  • Ke, Chang-Qing;Lee, Hoonyol;Li, Lan-Yu
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.15-28
    • /
    • 2019
  • By applying the method of SAR interferometry to X-band synthetic aperture radar (SAR) image of COSMO-SkyMed, detailed motion patterns of five glaciers in the Parlung Zangbo River basin, Tibetan Plateau, in January 2010 have been derived. The results indicate that flow patterns are generally constrained by the valley geometry and terrain complexity. The maximum of $123.9ma^{-1}$ is observed on glacier No.1 and the minimum of $39.4ma^{-1}$ is found on glacier No.3. The mean values of five glaciers are between 22.9 and $98.2ma^{-1}$. Glaciers No.1, No.2, No.4 and No.5 exhibit high velocities in their upper sections with big slope and low velocities in the lower sections. A moraine lake accelerates the speed of mass exchange leading to a fast flow at the terminal of glacier No.3. These glaciers generally move along the direction of decreased elevation and present a macroscopic illustration of the motion from the northwest to the southeast. The accuracy of DEM and registration conditions of DEM-simulated terrain phases has certain effects on calculations of glacier flow direction and velocity. The error field is relatively fragmented in areas inconsistent with the main flow line of the glaciers, and the shape and uniformity of glacier are directly related to the continuous distribution of flow velocity errors.

Application of Hyperspectral Imagery to Decision Tree Classifier for Assessment of Spring Potato (Solanum tuberosum) Damage by Salinity and Drought (초분광 영상을 이용한 의사결정 트리 기반 봄감자(Solanum tuberosum)의 염해 판별)

  • Kang, Kyeong-Suk;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Lee, Su Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.317-326
    • /
    • 2019
  • Salinity which is often detected on reclaimed land is a major detrimental factor to crop growth. It would be advantageous to develop an approach for assessment of salinity and drought damages using a non-destructive method in a large landfills area. The objective of this study was to examine applicability of the decision tree classifier using imagery for classifying for spring potatoes (Solanum tuberosum) damaged by salinity or drought at vegetation growth stages. We focused on comparing the accuracies of OA (Overall accuracy) and KC (Kappa coefficient) between the simple reflectance and the band ratios minimizing the effect on the light unevenness. Spectral merging based on the commercial band width with full width at half maximum (FWHM) such as 10 nm, 25 nm, and 50 nm was also considered to invent the multispectral image sensor. In the case of the classification based on original simple reflectance with 5 nm of FWHM, the selected bands ranged from 3-13 bands with the accuracy of less than 66.7% of OA and 40.8% of KC in all FWHMs. The maximum values of OA and KC values were 78.7% and 57.7%, respectively, with 10 nm of FWHM to classify salinity and drought damages of spring potato. When the classifier was built based on the band ratios, the accuracy was more than 95% of OA and KC regardless of growth stages and FWHMs. If the multispectral image sensor is made with the six bands (the ratios of three bands) with 10 nm of FWHM, it is possible to classify the damaged spring potato by salinity or drought using the reflectance of images with 91.3% of OA and 85.0% of KC.