Browse > Article
http://dx.doi.org/10.7780/kjrs.2019.35.1.2

InSAR-based Glacier Velocity Mapping in the Parlung Zangbo River Basin, Tibetan Plateau, China  

Ke, Chang-Qing (School of Geography and Ocean Science, Nanjing University)
Lee, Hoonyol (Department of Geophysics, Kangwon National University)
Li, Lan-Yu (School of Geography and Ocean Science, Nanjing University)
Publication Information
Korean Journal of Remote Sensing / v.35, no.1, 2019 , pp. 15-28 More about this Journal
Abstract
By applying the method of SAR interferometry to X-band synthetic aperture radar (SAR) image of COSMO-SkyMed, detailed motion patterns of five glaciers in the Parlung Zangbo River basin, Tibetan Plateau, in January 2010 have been derived. The results indicate that flow patterns are generally constrained by the valley geometry and terrain complexity. The maximum of $123.9ma^{-1}$ is observed on glacier No.1 and the minimum of $39.4ma^{-1}$ is found on glacier No.3. The mean values of five glaciers are between 22.9 and $98.2ma^{-1}$. Glaciers No.1, No.2, No.4 and No.5 exhibit high velocities in their upper sections with big slope and low velocities in the lower sections. A moraine lake accelerates the speed of mass exchange leading to a fast flow at the terminal of glacier No.3. These glaciers generally move along the direction of decreased elevation and present a macroscopic illustration of the motion from the northwest to the southeast. The accuracy of DEM and registration conditions of DEM-simulated terrain phases has certain effects on calculations of glacier flow direction and velocity. The error field is relatively fragmented in areas inconsistent with the main flow line of the glaciers, and the shape and uniformity of glacier are directly related to the continuous distribution of flow velocity errors.
Keywords
InSAR method; Glacier velocity; Error analysis; Parlung Zangbo River basin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Meier, M.F., 1962. Proposed definitions for glacier mass buget terms, Journal of Glaciology, 4(33): 252-263.   DOI
2 Michel, R. and E. Rignot, 1999. Flow of Glaciar Moreno, Argentina, from repeat-pass shuttle imaging radar images: comparison of the phase correlation method with radar interferometry, Journal of Glaciology, 45(149): 93-100.   DOI
3 Mohr, J.J., N. Reeh, and S.N. Madsen, 1998. Three-dimensional glacier flow and surface elevation measured with radar interferometry, Nature, 391: 273-276.   DOI
4 Muskett, R.R., C.S. Lingle, J.M. Sauber, B.T. Rabus, and W. V. Tangborn, 2008. Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, U.S.A. from InSAR DEMs and ICESat altimetry, Earth Planetary Science Letters, 265(3-4): 345-359.   DOI
5 Arendt, A.A., K.A. Echelmeyer, W.D. Harrison, C.S. Lingle, and V.B. Valentine, 2002. Rapid wastage of Alaska glaciers and their contribution to rising sea level, Science, 297(5580): 382-386.   DOI
6 Barry, R.G., 2006. The status of research on glaciers and global glacier recession: a review, Physical Geography, 30(3): 285-306.   DOI
7 Bartholomaus, T.C., R.S. Anderson, and S.P. Anderson, 2008. Response of glacier basal motion to transient water storage, Nature Geoscience, 1: 33-37.   DOI
8 Berthier, E., H. Vadon, D. Baratoux, Y. Arnaud, C. Vicent, K.L. Feigl, F. Remy, and B. Legresy, 2005. Surface motion of mountain glaciers derived from satellite optical imagery, Remote Sensing of Environment, 95(1): 14-28.   DOI
9 Bjornsson, H., 1998. Hydrological characteristics of the drainage system beneath a surging glacier, Nature, 395: 771-774.   DOI
10 Chen, R.R., S.Z. Zhou, and Y.L. Deng, 2012. Morphological characteristics of glacial deposits during the last glaciaton-taking the Parlung Zangbo River Basins as an example, Journal of Glaciology and Geocryology, 34(4): 836-847 (in Chinese).
11 Strozzi, T., U. Wegmueller, L. Tosi, G. Bitelli, and V. Spreckels, 2001. Land subsidence monitoring with differential SAR interferometry, Photogrammetric Engineering and Remote Sensing, 67(11): 1261-1270.
12 Neelmeijer, J., M. Mahdi, and H. U. Wetzel, 2014. Estimating spatial and temporal variability in surface kinematics of the Inylchek Glacier, Central Asia, using TerraSAR-X data, Remote Sensing, 6(10): 9239-9259.   DOI
13 Scharroo, R. and P. Visser, 1998. Precise orbit determination and gravity field improvement for the ERS satellites, Journal of Geophysical Research, 103: 8113-8127.   DOI
14 Schubert, A., A. Faes, A. Kaab, and E. Meier, 2013. Glacier surface velocity estimation using repeat TerraSAR-X images: Wavelet- vs. correlation-based image matching, ISPRS Journal of Photogrammetry Remote Sensing, 82: 49-62.   DOI
15 Wuite, J., K.C. Jezek, X. Wu, K. Farness, and R. Carande, 2009. The velocity field and flow regime of David Glacier and DrygalskiIce Tongue, Antarctica, Polar Geography, 32(3-4): 111-127.   DOI
16 Cui, H. and J. Wang, 2013. The methods for estimating the equilibrium line altitudes of a glacier, Journal of Glaciology and Geocryology, 35(2): 345-354 (in Chinese).
17 Ciappa, A., L. Pietranera, and F. Battazza, 2010. Perito Moreno Glacier (Argentina) flow estimation by COSMO SkyMed sequence of high-resolution SAR-X imagery, Remote Sensing and Environment, 9(15): 2088-2096.
18 Cigna, F., B. Osmanoglu, E. Cabral-Cano, T.H. Dixon, J.A. Avila-Olivera, V.H. Garduno-Monroy, C. DeMets, and S. Wdowinski, 2012. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico, Remote Sensing of Environment, 117: 146-161.   DOI
19 COSMO SkyMed System, 2010. Description and User guide, http://www.e-geos.it/products/cosmo.html, Accessed on Jun. 7, 2018.
20 Crosetto, M., O. Monserrat, M. Cuevas-Gonzalez, N. Devanthery, G. Luzi, and B. Crippa, 2015. Measuring thermal expansion using X-band persistent scatterer interferometry, ISPRS Journal of Photogrammetry Remote Sensing, 100: 84-91.   DOI
21 Diolaiuti, G., D. Bocchiola, C. D'agata, and C. Smiralia, 2012. Evidence of climate change impacupon glaciers' recession within the Italian, Theoretical add Applied Climatology, 109(3-4): 429-445.   DOI
22 Dowdeswell, J.A., B. Unwin, A.M. Nuttall, and D.J. Wingham, 1999. Velocity structure, flow instability and mass flux on large Arctic ice cap from satellite radar interferometry, Earth and Planetary Science Letter, 167(3-4): 131-140.   DOI
23 Jiang, Z.L., S.Y. Liu, and H.D. Han, 2011. Analyzing mountain glacier surface velocities using SAR Data, Remote Sensing Technology and Application, 26(5): 640-646 (in Chinese).
24 Yang, W., T.D. Yao, B.Q. Xu, L.L. Ma, Z.H. Wang, and M. Wan, 2010. Characteristics of recent temperat glacier fluctuations in the Parlang Zangbo River basin, southeast Tibetan Plateau, Chinese Science Bulletin, 55(18): 1775-1780.   DOI
25 Goldstein, R.M., H. Engelhardt, B. Kamb, and R.M. Frolich, 1993. Satellite radar interferometry for monitoring ice sheet motion application to an Antarctic ice stream, Science, 262: 1525-1530.   DOI
26 Gourmelen, N., S.W. Kim, A. Shepherd, J.W. Park, A.V. Sundal, H. Bjornsson, and F. Palsson, 2011. Ice velocity determined using conventionaland multiple-aperture InSAR, Earth and Planetary Science Letter, 307(1-2): 156-160.   DOI
27 Huai, B.J., Z.Q. Li, and S.J. Wang, 2014. Remote sensing analysis of glaciers change in the Heihe River Basin, Northwest China, during the recent decades, Journal of Geographical Sciences, 24(6): 993-1008.   DOI
28 Huang, M. and Z. Sun, 1982. Some of flow characteristics of continental-type glaciers in China, Journal of Glaciology and Geocryology, 4(2): 35-45 (in Chinese).
29 Yasuda, T. and M. Furuya, 2013. Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by Synthetic Aperture Radar data, Remote Sensing of Environment, 128: 87-106.   DOI
30 Yao, T. D., L. Thompson, W. Yang, W. Yu, Y. Gao, X. Guo, X. Yang, K. Duan, H. Zhao, B. Xu, J. Pu, A. Lu, Y. Xiang, D.B. Kattel, and D. Joswiak, 2012. Different glacier status withatmospheric circulations in Tibetan Plateau and surroundings, Nature Climate Change, 2(9): 663-667.   DOI
31 Zebker, H.A., C.L.Werner, P.A. Rosen, and S. Hensley, 1994. Accuracy of topographic maps derived from ERS-1 interferometric radar, IEEE Transactions on Geoscience and Remote Sensing, 32(4): 823-836.   DOI
32 Zeng, Q.L., Z.F. Yang, and G.X. Yuan, 2007. Songzong Lake: an ice-dammed lake of last glacial maxmum in Purlung Tasangpo River, Southeast Tibet, Quaternary Sciences, 27(1): 85-92 (in Chinese).   DOI
33 Zhou, J.M., Z. Li, X.W. Li, S.Y. Liu, Q. Chen, C. Xie, and B.S. Tian, 2011. Movement estimate of the Dongkemadi Glacier on the Qinghai-Tibetan Plateau using L-band and C-band spaceborne SAR data, International Journal of Remote Sensing, 32(22): 6911-6928.   DOI
34 Yan, S.Y., H.D. Guo, G. Liu, and W. Fu, 2013. Monitoring Muztagh Kuksai Glacier surface velocity with L-band SAR data in southwestern Xinjiang, China, Environmental Earth Science, 70(7): 3175-3184.   DOI
35 Joughin, I.R., R. Kwok, and M.A. Fahnestock, 1998. Interferometric estimation of threedimensional ice-flow using ascending and de-scending passes, IEEE Transactions on Geoscience and Remote Sensing, 36(1): 25-37.   DOI
36 Jiang, Z.L., S.Y. Liu, J. Peters, J. Lin, S.C. Long, Y.S. Han, and X. Wang, 2012. Analyzing Yengisogat Glacier surface velocities with ALOS PALSAR data feature tracking, Karakoram, China, Environmental Earth Sciences, 67(4): 1033-1043.   DOI
37 Joughin, I.R., 2002. Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach, Annals of Glaciology, 34: 195-201.   DOI
38 Joughin, I.R., B.E. Smith, and W. Abdalati, 2010. Glaciological advances made with interferometric synthetic aperture radar, Journal of Glaciology, 56(200): 1026-1042.   DOI
39 Joughin, I.R., D.P. Winebrenner, and M.A. Fahnestock, 1995. Observations of ice-sheet motion in Greenland using satellite radar interferometry, Geophysical Research Letters, 22(5): 571-574.   DOI
40 Joughin, I.R., R. Kwok, and M.A. Fahnestock, 1996. Estimation of ice sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland, Journal of Glaciology, 42(142): 564-574.   DOI
41 Joughin, I.R., W. Abdalati, and M. Fahnestock, 2004. Large fluctuations in speed on Greenland's Jakobshavn Isbrae Glacier, Nature, 432: 608-610.   DOI
42 Kang, S., Y. Xu, Q. You, W.A. Flugel, N. Pepin, and T.D. Yao, 2010. Review of climate and cryospheric change in the Tibetan Plateau, Environmental Research Letter, 5(1): 015101.   DOI
43 Ke, C.Q., C. Kou, R. Ludwig, and X. Qin, 2013. Glacier velocity measurements in the eastern Yigong Zangbo basin, Tibet, China, Journal of Glaciology, 59(218): 1060-1068.   DOI
44 Li, S., C. Benson, R. Gens, and C. Lingle, 2008. Motion patterns of Nabesna Glacier (Alaska) revealed by interferometric SAR techniques, Remote Sensing of Environment, 112(9): 3628-3638.   DOI
45 Kern, Z. and P. Laszlo, 2010. Size specific steady-state accumulation-area ratio: an improvement for equilibrium-line estimation of small palaeoglaciers, Quaternary Science Reviews, 29: 2781-2787.   DOI
46 Kumar, V., G. Venkataramana, and K.A. Hogda, 2011. Glacier surface velocity estimation using SAR interferometry technique applying ascending and descending passes in Himalayas, International Journal of Applied Earth Observation and Geoinformation, 13(4): 545-551.   DOI
47 Li, J.J., B.X. Zheng, and X.J. Yang, 1986. Glaciers of Xizang (Tibet), Science Press, Beiging, China.
48 Liu, G.X., H. Jia, R. Zhang, H. Zhang, B. Yu, and M. Sang, 2011. Exploration of subsidence estimation by persistent scatterer InSAR on time series of high resolution TerraSAR-X images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1): 159-170.   DOI
49 Liu, S.Y., X. Qin, and T. Zhang, 2012. Variation of the Ningchan River Glacier No. 3 in the Lenglongling Range, East Qilian Mountains, Journal of Glaciology and Geocryology, 34(5): 1031-1036 (in Chinese).
50 Mark, F.M. and A.S. Post, 2002. Recent variations in mass net budgets of glaciers in western north America, International Journal of Climatology, 22(1): 107-120.   DOI
51 McCarthy, J.J., O.F. Canziani, and N.A. Leary, 2011. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), University of Cambridge Press, Cambridge, UK.
52 Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, 1993. The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364(8): 138-142.   DOI