• Title/Summary/Keyword: bamboo reinforced concrete

Search Result 3, Processing Time 0.015 seconds

Evaluation of Bamboo Reinforcements in Structural Concrete Member

  • Siddika, Ayesha;Al Mamun, Md. Abdullah;Siddique, Md. Abu Bakar
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.4
    • /
    • pp.13-19
    • /
    • 2017
  • This study is based on the use and performance of bamboo reinforcements in construction of low-cost structures. This study investigated the physical and mechanical properties of bamboo reinforcements. Bamboo reinforced concrete beam specimens were tested with different reinforcement ratios and observed the load capacity, deflection and failure patterns. It was observed that, flexural strength of bamboo reinforced column is sufficient higher than plain cement concrete and comparable to steel reinforced concrete beams. Bamboo reinforced concrete columns with different reinforcement ratio also tested and observed the ultimate compressive strength and failure pattern. It found, all columns failed in a similar pattern due to crushing of concrete. According to cost analysis, bamboo reinforced beams and columns with moderate reinforcement ratio showed the best strength-cost ratio among plain cement concrete and steel reinforced concrete.

Analysis of stress dispersion in bamboo reinforced wall panels under earthquake loading using finite element analysis

  • Kumar, Gulshan;Ashish, Deepankar K.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.451-461
    • /
    • 2018
  • Present study is mainly concerned about the idea of innovative utilization of bamboo in modern construction. Owing to its compatible mechanical properties, a beneficial effect of its use in reinforced concrete (RC) frame infills has been observed. In this investigation, finite element analyses have been performed to examine the failure pattern and stress distribution pattern through the infills of a moment resisting RC frame. To validate the pragmatic use of bamboo reinforced components as infills, earthquake loading corresponding to Nepal earthquake had been considered. The analysis have revealed that introduction of bamboo in RC frames imparts more flexibility to the structure and hence may causes a ductile failure during high magnitude earthquakes like in Nepal. A more uniform stress distribution throughout the bamboo reinforced wall panels validates the practical feasibility of using bamboo reinforced concrete wall panels as a replacement of conventional brick masonry wall panels. A more detailed analysis of the results have shown the fact that stress concentration was more on the frame components in case of frame with brick masonry, contrary to the frame with bamboo reinforced concrete wall panels, in which, major stress dispersion was through wall panels leaving frame components subjected to smaller stresses. Thus an effective contribution of bamboo in dissipation of stresses generated during devastating seismic activity have been shown by these results which can be used to concrete the feasibility of using bamboo in modern construction.

Strength and behaviour of bamboo reinforced concrete wall panels under two way in-plane action

  • Ganesan, N.;Indira, P.V.;Himasree, P.R.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • An experimental investigation has been carried out on the use of an environmentally sustainable material, bamboo, in the construction of precast concrete structural wall panels. The strength and behaviour of three prototype bamboo reinforced concrete wall panel specimens under two-way in-plane action was studied. The specimens with varying aspect ratio and thinness ratio were tested to fail under a uniformly distributed in-plane load applied at an eccentricity of t/6. The aspect ratio of the specimens considered includes 1.667, 1.818 and 2 and the thinness ratio includes 12.5, 13.75 and 15. The influence of aspect ratio and thinness ratio of bamboo reinforced concrete wall panels, on its strength and behaviour was discussed. Varnished and sand blasted bamboo splints of 20 mm width and thickness varying from 8 to 15 mm were used as reinforcement in concrete. Based on the study, an empirical equation was developed considering the geometrical parameters of bamboo reinforced concrete wall panels for predicting its ultimate strength under two way in-plane action.