• Title/Summary/Keyword: ballistic analysis

Search Result 147, Processing Time 0.023 seconds

An Effectiveness Analysis of Anti-Ballisitic Missile Launcher Arrangement for the Lower Tier Defense against the Ballistic Missile (탄도미사일 하층 방어 수행을 위한 발사대 배치 효과도 분석)

  • Kwon, Hyuck-Hoon;Lee, Bum-Seok;Kim, Yoon-Hwan;Choi, Kwan-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.590-597
    • /
    • 2013
  • For a lower tier defense, the distance between a launcher and an engagement control station is quite important to estimate the proper defense area and to effectively arrange missile launchers. In this paper, we have analyzed an effectiveness of anti-ballistic missile launcher arrangement for the lower tier defense against the ballistic missile. The operation concept, specific configuration and aerodynamic characteristics of the ballistic missile such as SCUD-B/C, Nodong are considered in order to develop a realistic engagement simulation. The diverse engagement results through numerical simulations are provided to conduct the effectiveness analysis of anti-ballistic missiles.

A Study on the Flight Trajectory Prediction Method of Ballistic Missiles - BM type by Adjusting the Angle of a Flight Path and a Range - (탄도미사일의 비행궤적 예측 방법 연구 - 탄종별 비행경로각과 사거리를 중심으로 -)

  • Yoo, Byeong Chun;Kim, Ju Hyun;Kwon, Yong Soo;Choi, Bong Wan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • The characteristics of ballistic missiles are changing rapidly but studies have mostly focused on fragmentary flight trajectory analysis estimating the changing characteristics of some types, while there is a lack of research on comprehensive and efficient ballistic search, detection and prediction for missiles including the new types that have been gaining attention lately. This paper analyzes the flight trajectory characteristics of ballistic missiles at various ranges considering flight path angle adjustment, specific impulse and drag force with altitude based on the optimized equations of motion reflecting the parameters of North Korea's general and new types of ballistic missiles. The flight trajectory characteristics of representative ranges for each ballistic missile were analyzed by adjusting the flight path angle in the minimum energy method, lofted method, and depressed method. In addition, High value target can attacked by ballistic missiles considering flight path angle adjustment at various points. It's expected to be used to Threat Evaluation and Weapon Allocation, and deployment of defense systems by interpreting the analysis of the latest Iskander-class ballistic missiles and the new multiple rocket launcher.

Internal Ballistic Analysis using Two Kinds of Propellant for Design of Dual-thrust Solid Rocket Motor (이중추력형 고체 추진기관 설계를 위한 이종추진제 적용 내탄도 해석)

  • Kim, Hanjun;Moon, Kyungje
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1176-1179
    • /
    • 2017
  • In this study, internal ballistic analysis theories of dual-thrust solid rocket motor using two kinds of propellant are found, and the theories are applied to develop internal ballistic analysis model. Internal ballistic analysis which is dual-thrust solid rocket motor using two kinds of propellant is carried out an applying of the random figures of two kinds of propellant and an analyze of the test results. Through this analytical model was able to an applying internal ballistic analysis for dual-thrust solid rocket motor using two kinds of propellant.

  • PDF

Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses

  • Ansari, Md. Muslim;Chakrabarti, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.829-849
    • /
    • 2016
  • In this paper, experimental as well as numerical analysis of Glass Fiber Reinforced Polymer (GFRP) laminated composite has been presented under ballistic impact with varying projectile nose shapes (conical, ogival and spherical) and incidence velocities. The experimental impact tests on GFRP composite plate reinforced with woven glass fiber ($0^{\circ}/90^{\circ}$)s are performed by using pneumatic gun. A three dimensional finite element model is developed in AUTODYN hydro code to validate the experimental results and to study the ballistic perforation characteristic of the target with different parametric variations. The influence of projectile nose shapes, plate thickness and incidence velocity on the variation of residual velocity, ballistic limit, contact force-time histories, energy absorption, damage pattern and damage area in the composite target have been studied. The material characterization of GFRP composite is carried out as required for the progressive damage analysis of composite. The numerical results from the present FE model in terms of residual velocity, absorbed energy, damage pattern and damage area are having close agreement with the results from the experimental impact tests.

Experimental and numerical research on ballistic performance of carbon steels and cold worked tool steels with and without Titanium Nitride (TiN) coating

  • Ergul, Erdi;Doruk, Emre;Pakdil, Murat
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • It is extremely important to be aware of the ballistic performances of engineering materials in order to be able to choose the lightest armor providing full ballistic protection in civil and military applications. Therefore, ballistic tests are an important part of armor design process. In this study, ballistic performance of plates made of carbon steel and cold worked tool steel against 7.62 mm AP (armor-piercing) bullets was examined experimentally and numerically in accordance with NIJ standards. Samples in different sizes were prepared to demonstrate the effect of target thickness on ballistic performance. Some of these samples were coated with titanium nitride using physical vapor deposition (PVD) method. After examining all successful and unsuccessful samples at macro and micro levels, factors affecting ballistic performance were determined. Explicit non-linear analyses were made using Ls-Dyna software in order to confirm physical ballistic test results. It was observed that the ballistic features of steel plates used in simulations comply with actual physical test results.

Ballistic Match Analysis for 5.56 MM Bullet with New Copper Core Material (5.56밀리 소화기탄 탄자 코어 재질 변경에 따른 동심탄의 탄도호환성 분석)

  • Ko, Yongsin;Park, Yongdeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.712-720
    • /
    • 2016
  • The purpose of this study was to inspect ballistic match of copper bullet at 4 points by analyzing vertical deviation about shot group of the 5.56 mm common bullets and copper bullets. The 5.56 mm bullet with new copper core material was developed for mitigation of environmental pollution and harmfulness to human body. The results of this study are as follows; using the regression analysis, estimated reference value of ballistic match were 51.6 mm, 64.9 mm, 87.3 mm and 99.6 mm at 25 m, 100 m, 200 m and 250 m range respectively. When analyzing the shooting test data, alternative hypothesis(The vertical deviations are less than the reference value) was adopted as the result of analyzing data using t-test. And the values of data through tool(PRODAS) and standard trajectory equation meet requirements of estimated ballistic match respectively. In conclusion, the level of ballistic match of 5.56 mm copper bullets meets the estimated reference level through regression analysis at 4 points.

Analysis of Flight Trajectory Characteristics of the MRBM by Adjusting the Angle of a Flight Path (비행경로각 조정에 의한 중거리 탄도미사일의 비행궤적 특성 해석)

  • Kim, Jiwon;Kwon, Yong Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2015
  • North Korea has developed ballistic missiles over the past 30 years. It is believed that they have a variety of ballistic missiles more than 1,000. Because these ballistic missiles threaten South Korea directly, accurate analysis of them is essential. Flight trajectories of the ballistic missiles are generally changed by means of adjusting payload weight, Isp, flight path angle, and cut-off time. The flight path angle is widely used to control the missile range. However it is difficult to predict the missile trajectory exactly in real operational environment because the missile could be launched according to its intention and purpose. This work analyzed the 1,000 km range MRBM's trajectory characteristics from adjusting flight path angle which is depressed as well as lofted method. The analysis of missile trajectory characteristics is based on the simulation of the missile trajectory model developed by KNDU research team.

Numerical Ballistic Modeling in Game Engines

  • YoungBo Go;YunJeong Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • To improve the overall performance and realism of your game, it is important to calculate the trajectory of a projectile accurately and quickly. One way to increase realism is to use a ballistic model that takes into account factors such as air resistance, density, and wind when calculating a projectile's trajectory. However, the more these factors are taken into account, the more computationally time-consuming and expensive it becomes, creating a trade-off between overall performance and efficiency. Therefore, we present an optimal solution to find a balance between ballistic model accuracy and computation time. We perform ballistic calculations using numerical methods such as Euler, Velocity Verlet, RK2, RK4, and Akima interpolation, and measure and compare the computation time, memory usage (RSS, Resident Set Size), and accuracy of each method. We show developers how to implement more accurate and efficient ballistic models and help them choose the right computational method for their numerical applications.

Analysis of Flight Trajectory Characteristics of Ballistic Missiles Considering Effects of Drag Forces (항력을 고려한 탄도미사일 비행궤적 특성 해석)

  • Kim, Jiwon;Kwon, Yong Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.134-140
    • /
    • 2016
  • This paper analyzed flight trajectory characteristics of ballistic missiles considering effects of drag forces. It is difficult to intercept ballistic missiles which fly over atmosphere with supersonic speeds and small radar cross section (RCS). In particular, the velocities in the phases of boost and terminal are changed significantly due to the steep variation of the drag force. Therefore, in order to build up a successful ballistic missile defense systems, the effects of the drag forces should be considered in the analysis of ballistic missile trajectory characteristics. In this point of view, this work analyzed the effects of drag forces and derived the flight trajectory characteristics of Scud B, C and Nodong missiles. Model of the ballistic missile flight trajectory is considered the effects of Coriolis and centrifugal forces, and specifications of the missiles are open sources.

Modeling and Simulation for Effectiveness Analysis of Anti-Ballistic Warfare in Naval Vessels (함정의 대탄도탄전 효과도 분석을 위한 모델링 및 시뮬레이션)

  • Jang Won Bae;GuenHo Lee ;Hyungho Na ;Il-Chul Moon
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.55-66
    • /
    • 2023
  • In recent years, naval vessels have been developed to fulfill a variety of missions by being equipped with various cutting-edge equipment and ICT technologies. One of the main missions of Korean naval vessels is anti-ballistic missile warfare to defend key units and areas against the growing threat of ballistic missiles. Because the process of detection and interception is too complex and the cost of failure is much high, a lot of preparation is required to effectively conduct anti-ballistic missile warfare. This paper describes the development of a simulation model of anti-ballistic missile warfare with combat systems and equipment to be installed on future naval vessels. In particular, the DEVS formalism providing a modular and hierarchical modeling manner was applied to the simulation model, which can be utilized to efficiently represent various anti-ballistic missile warfare situations. In the simulation results presented, experiments were conducted to analyze the effectiveness of the model for effective detection resource management in anti-ballistic missile warfare. This study is expected to be utilized as a variety of analysis tools necessary to determine the optimal deployment and configuration of combat resources and operational tactics required for effective anti-ballistic missile warfare of ships in the future.