• 제목/요약/키워드: ballasted railway track

검색결과 82건 처리시간 0.022초

고속철도 궤도 타입에 따른 진동 특성 (Vibration Characteristics of High-speed Railway Lines on the Type of Track)

  • 이찬우;함염삼;김재철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.332-336
    • /
    • 2011
  • IN THIS STUDY, BASED ON THE TYPE OF HIGH SPEED RAILWAY TRACK VIBRATION CHARACTERISTICS WERE MEASURED AT KTX VEHICLE. KTX ROUTE BALLASTED TRACK HAS BEEN INSTALLED TOGETHER WITH THE CONCRETE TRACK. CONCRETE MUST BE TRACK IRREGULARITY THAN BALLASTED TRACK, VEHICLES VIBRATION VALUES THAT ARE SMALLER. ALSO, IN TERMS OF MAINTENANCE, CONCRETE TRACK IS KNOWN TO BE MORE FAVORABLE THAN THE BALLASTED TRACK. PHASE 2 IS THE KTX, DAEGU - BUSAN IS A SECTION OF CONCRETE TRACK. IN THIS STUDY, "KUUNG-BU HIGH-SPEED RAILWAY LINES" INSTALLED ON THE CONCRETE TRACK AND BALLASTED TRACK KTX FROM THE VEHICLE WHEN INSTALLED BETWEEN RAILS, SLEEPER AND BALLAST ON THE TRACK WAS MEASURED VIBRATIONS.

  • PDF

자갈궤도의 상태평가를 위한 실험적 연구 (Experimental Study on Condition Evaluation for Railway Ballasted Track)

  • 최정열;방은영
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.152-157
    • /
    • 2018
  • The degradation and damage of the components for ballasted track could be caused a serious problem for railway safety. Therefore, the integrity evaluation of ballasted track condition is important to ensure and predict that the track safety and track maintenance. Various track components such as rail pad, ballast, sleeper, and rail that are widely used in Republic of Korea and represent a range of physical properties have been selected for this research. In this study, the experimental modal analysis was performed by the non-destructive testing. Modal test results were obtained from the field test and used to assess the condition of the track components. From the field test, the system of ballasted track was found to be simplified as a two-degree-of-freedom(2DOF) dynamic system. The condition of track component was found to directly affect the dynamic response of ballasted tracks. As the results, the dynamic properties of the track component was depend on the track condition and was distributed more roughly and over a wider range than its initial design values. Further, the methodology presented in this study is possible to determine experimentally the fundamental track parameters which are required in the numerical analysis, and also are useful for the safety assessment of track condition.

자갈궤도와 콘크리트궤도에서의 하중재하에 따른 노반거동 비교 (A Comparison of Behavior of the Roadbeds of Ballasted & Concrete Track with the Cyclic Loading)

  • 최찬용;이성혁;엄기영
    • 한국지반신소재학회논문집
    • /
    • 제9권3호
    • /
    • pp.1-8
    • /
    • 2010
  • 국내에 적용하고 있는 궤도시스템은 크게 자갈궤도와 콘크리트궤도로 구분할 수 있다. 본 논문에서는 콘크리트궤도와 자갈궤도의 노반 거동현상을 실험적으로 비교하였다. 실 대형 실험결과 하중 분산은 자갈궤도의 경우 연성포장구조, 콘크리트궤도는 강성포장구조의 형태로 하중이 분산되었으며 하중배분율은 약 30%:20%:15%로 자갈궤도보다 폭 넓게 분산되었다. 열차하중에 대한 노반에서 발생된 토압은 약 30kPa 이내로 기존 실차주행시험결과와 유사한 결과이며 자갈궤도에 비해 약 4배 정도 작게 발생하였다. 또한 반복하중에 대한 콘크리트궤도의 지중입자속도는 약 0.3cm/sec 이내로 자갈궤도보다 8배 정도 작게 측정되었다.

  • PDF

Parametric Study on Geogrid-Reinforced Track Substructure

  • Oh, Jeongho
    • International Journal of Railway
    • /
    • 제6권2호
    • /
    • pp.59-63
    • /
    • 2013
  • The purpose of this paper was to evaluate the effectiveness of geogrid for conventional ballasted track and asphalt concrete underlayment track using PLAXIS finite element program. Geogrid element was modeled at various locations that include subballast/subgrade, subballast/ballast interfaces, middle of the ballast, and one-third depth of the ballast. The results revealed that the effectiveness of geogrid reinforcement appeared to be larger for ballasted track structure compared to asphalt concrete underlayment track. Particularly, in case of installing geogrid at one-third depth of ballast layer in a conventional ballasted track, the most effectiveness of geogrid reinforcement was achieved. The influence of geogrid axial stiffness on track substructure response was not clear to conclude. Further validations using a discrete element method along with experimental investigation are considered as a future study. The effect of asphalt concrete layer modulus was evaluated. The results exhibited that higher layer modulus seems to be effective in controlling displacement and strain of track substructure. However it also yields slightly higher stresses within track substructure. It infers that further validations are required to come up with optimum asphalt concrete mixture design to meet economical and functional criteria.

A comparison between the dynamic and static stiffness of ballasted track: A field study

  • Mosayeb, Seyed-Ali;Zakeri, Jabbar-Ali;Esmaeili, Morteza
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.757-769
    • /
    • 2016
  • Rail support modulus is an important parameter for analysis and design of ballasted railway tracks. One of the challenges in track stiffness assessment is its dynamic nature under the moving trains which differs it from the case of standing trains. So the present study is allocated to establish a relation between the dynamic and static stiffness of ballasted tracks via field measurements. In this regard, two different sites of ballasted tracks with wooden and concrete sleepers were selected and the static and dynamic stiffness were measured based on Talbot - Wasiutynski method. In this matter, the selected tracks were loaded by two heavy and light car bodies for standing and moving conditions and consequently the deflection basins were evaluated in both sites. Knowing the deflection basins respect to light and heavy loading conditions, both of static and dynamic stiffness values were extracted. Finally two definite relations were obtained for ballasted tracks with wooded and concrete sleepers.

실대형 실험을 통한 아스팔트 노반상 자갈궤도의 거동 특성 (Behavior Characteristics of Ballasted Track on Asphalt Roadbed Using Real Scale Test)

  • 이성혁;이진욱;이현민
    • 한국철도학회논문집
    • /
    • 제18권3호
    • /
    • pp.252-260
    • /
    • 2015
  • 아스팔트 노반상 자갈궤도(이하, AC자갈궤도)는 아스팔트 콘크리트 노반(이하, AC노반)에 의한 열차하중의 분산으로 노반 두께 감소 효과, 빗물의 침투방지 효과로 인한 노반부의 강도저하와 연약화 방지 효과, 노반 분니 방지 및 동상방지에 의한 유지보수비 절감 효과를 얻을 수 있다. 이와 같은 장점들에 의해 AC자갈궤도는 유럽 및 일본 등에서 널리 사용되고 있으며 국내에서도 도입을 위한 연구가 진행 중이다. 본 논문에서는 유한요소해석 프로그램인 ABAQUS을 이용하여 현재 철도설계기준에 제시되어 있는 고속철도용 자갈궤도의 성능에 부합하는 AC자갈궤도 단면을 선정하고 선정된 2개의 단면을 대상으로 실물 대형 정 동적 열차하중 재하 시험을 수행하였다. 실대형 실험 결과, AC자갈궤도가 강화노반 상면에 작용하는 토압이 상대적으로 작게 측정되었으며 탄성 및 소성변위도 상대적으로 유사 또는 작은 것을 알 수 있었다. 따라서 AC자갈궤도가 자갈궤도에 비해 열차하중 분산효과에 의한 강화노반 두께 감소효과가 있고 소성변위도 작으므로 궤도의 장기 유지관리 측면에서도 유리한 궤도구조임을 확인하였다.

터널내 자갈도상제도의 자갈도상매트 시공 후 진동 저감 효과에 대한 연구 (A Study on Effect of Vibration Reduction with Ballast Mat of Ballasted Track in Tunnel)

  • 유충준
    • 한국철도학회논문집
    • /
    • 제12권1호
    • /
    • pp.167-174
    • /
    • 2009
  • 고속화 되어가는 열차의 주행으로 인한 동적인 힘에 의해 자갈도상궤도에서는 구조물의 피로가 증가하여 내구성이 저하되고 있으며 자갈의 세굴화로 인한 침하에 의해 궤도의 유지보수주기가 짧아지고 있다. 더욱이 자갈도상 궤도로 구성된 터널 철도 주변의 주거지역에서는 철도 진동 문제로 민원이 증가하고 있다. 자갈도상궤도에서 이러한 문제가 발생시 에는 기존의 자갈도상궤도구조를 이용하되 유지보수 및 진동을 저감시킬 수 있는 구조로서 터널 내 일 구간에 자갈도상매트를 설치한다. 본 논문에서는 터널 내 자갈도상궤도의 자갈 도상매트 설치구간과 비 설치구간에서 측정한 진동의 크기를 통행열차별로 비교함으로서 자갈도상매트의 진동저감효과를 비교 분석하였다.

Design Loads on Railway Substructure: Sensitivity Analysis of the Influence of the Fastening Stiffness

  • Giannakos, Konstantinos
    • International Journal of Railway
    • /
    • 제7권2호
    • /
    • pp.46-56
    • /
    • 2014
  • The superstructure of the railway track undertakes the forces that develop during train passage and distributes them towards its seating. The track panel plays a key role in terms of load distribution, while at the same time it maintains the geometrical distance between the rails. The substructure and ballast undergo residual deformations under high stresses that contribute to the deterioration of the so-called geometry of the track. The track stiffness is the primary contributing factor to the amount of the stresses that develop on the substructure and is directly influenced by the fastening resilience. Four methods from the international literature are used in this paper to calculate the loads and stresses on the track substructure and the results are compared and discussed. A parametric investigation of the stresses that develop on the substructure of different types of railway tracks (i.e. balastless vs ballasted) is performed and the results are presented as a function of the total static track stiffness.

급곡선 자갈궤도의 궤도변형에 관한 매개변수 해석 (Parametric analysis on Deformation of Sharp Curved Ballasted Track)

  • 최정열;김준형;손갑수;김상진
    • 한국안전학회지
    • /
    • 제32권4호
    • /
    • pp.28-33
    • /
    • 2017
  • A sharp curved ballasted track on earthwork that was connected with a direct fixation slab track on steel box railway bridges have been deformed and damaged despite the frequently maintenance by a restoring force of sharp curved rail and track-bridge interaction forces such as axial forces and longitudinal displacement of continuous welded rail(CWR) owing to their structural characteristics, calling for alternatives to improve the structural safety and track irregularity. In this study, the authors aim to prove a cause of deformation for the sharp curved ballasted tracks to enhance the structural safety and track irregularity of ballasted track in service. A track-bridge interaction analysis and a finite-element method analysis for the sharp curved ballasted track were performed to consider the axial force and longitudinal displacement of CWR, the temperature and the effect of restoring force of sharp curved rail. From the results, the deformation of the sharp curved ballasted track with adjusted sleeper spacing from 833mm to 590mm were significantly reduced.

자갈궤도용 침목방진패드의 수직 스프링강성 시험기법에 관한 실험적 연구 (An Experimental Study on the Spring Stiffness Test Method of under Sleeper Pad for Ballasted Track)

  • 최정열;신태형
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.82-88
    • /
    • 2016
  • Ballasted gravel will be damaged or worn by the repetitive train load. And these damages of ballast gravel could be increased by increasing vehicle speed. Therefore, various techniques for reducing the ballast pressure have been proposed, such as the attached pad type of sleeper bottom for ballasted track. In this study, spring stiffness test method were proposed to evaluate the performance of under sleeper pad for ballasted track. Standard ballast plate(SBP) was developed to simulate the ballast gravel and compared with the foreign test results. Experimental results showed a trend similar to the previous studies according to various loading plate type. specimen type(Type A, Type B) differences in spring stiffness according to hardness were not significant. Also, the FSP (Flat steel plate) - shaped jig is about 80% of the spring stiffness was greater than SBP. Therefore, to evaluate the actual spring stiffness of under sleeper pad for ballasted track, it was important to adopted the appropriate spring stiffness test method using the SBP to simulate actual field conditions.