• Title/Summary/Keyword: ball robot

Search Result 103, Processing Time 0.123 seconds

Modeling & Control of a Multi-Joint Robot actuated by the Ball Screw (볼나사 구동기를 이용한 다관절 로봇의 모델링 및 제어)

  • 최형식;김영식;전대원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.323-326
    • /
    • 1997
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, the developer a new type of robot actuated by the ball screw. The robot is an articulated shape, which is composed of four axes. The base axis is actuated similarly with conventional robot, but the others are actuated by four bars mechanism composed of the ball screw. We setup the dynamics model of the robot. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, we applied sliding-mode control.

  • PDF

Modeling and Sliding-mode Control of a Robot Manipulator actuated by the Ball Screw (볼나사를 이용한 매니퓰레이터의 모델링 및 슬라이딩모드 제어)

  • 최형식;박용헌;정경식;이호식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.292-295
    • /
    • 2001
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, a new type of robot actuated by the ball screw was proposed. The ball screw is actuated by using four bar mechanism. The dynamics model of the robot was set up. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, the sliding-mode control was applied.

  • PDF

Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace (확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발)

  • Jeong, Sung Hun;Kim, Giseong;Gwak, Gyeong Min;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

Development of a New Robot Manipulator Driven by the Closed-chain Actuator (폐체인 구조의 새로운 다관절 로봇 매니퓰레이터 개발)

  • 최형식;백창열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.238-245
    • /
    • 2003
  • To overcome the weakness in the load capacity of conventional robot manipulators actuated by motors with the speed reducer such as the harmonic driver, we proposed a new closed-chain type of the robot actuator which is composed of the four-bar-link mechanism driven by the ball screw. The robot manipulator is revolute-jointed and composed of four axes. The base axis is actuated by the lineal actuator such as the ball screw, and the others are actuated by the proposed actuator. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates and then they are mapped into the sliding coordinates of the ball screw. We performed fundamental tests on the structure of the robot.

Balancing Control of a Ball Robot Based on an Inverted Pendulum (역진자 기반 공 로봇의 균형제어)

  • Kang, Seok-Won;Park, Chan-Ik;Byun, Gyu-Ho;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.834-838
    • /
    • 2013
  • This paper proposes a new ball robot which has a four axis structure and four motors that directly actuate the ball to move or to maintain the balance of the robot. For the Balancing control, it is possible to use non-model-based controller to control simply without complex formula. All the gains of the controller are heuristically adjusted during the experiments. The tilt angle is measured by IMU sensors, which is used to generate the control input of the roll and pitch controller to make the tilt angle zero. The performance of the designed control system has been verified through the real experiments with the developed ball robot.

Travel Control of a Spherical Wheeled Robot (Ball-Bot) with Mecanum Wheel (메카넘휠을 적용한 구형바퀴로봇(볼-봇)의 주행제어)

  • Seo, Beomseok;Park, Jong-Eun;Park, Jee-Seol;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.713-717
    • /
    • 2014
  • In this paper, the travel control of the spherical wheeled robot with a mecanum wheel is impelemented. Four typical wheels or three omni wheels are used to consist of the ball-bot. the slip is occured when the typical wheels is used to the ball-bot. In order to reduce these slip, the spherical wheeled robot with macanum wheels is proposed. Through some experiments, we find that the proposed spherical wheeled robot with a mecanum wheel is superior to the conventional spherical wheeled robot with typical wheels.

Slip Ratio Reduction and Moving Balance Control of a Ball-bot using Mecanum Wheel (메카넘 휠을 이용한 볼-봇의 슬립률 감소와 균형 및 주행제어)

  • Park, Young Sik;Kim, Su Jeong;Byun, Soo Kyung;Lee, Jang Myung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.186-192
    • /
    • 2015
  • This paper proposes a robust balance and driving control for omni-directional ball robot(generally called ball-bot) with two axis mecanum wheel. Slip between ball and mecanum wheel actuator inevitably occurs along diagonal axis due to its instantaneous strong torque. In order to reduce and saturate slip, exact distance calculation scheme especially for rotational movement is essential. So this research solved Euler-Lagrange dynamics for proposed two axis ball robot based on practical mechanical modeling. Robust balance control was carried out by PID controller according to the pitch and roll angles of ball robot by using sensor fusion between AHRS and wheel encoder. Proposed PID controller enhances stability by reducing steady state error and settling time. Proposed slip control algorithm for omni-directional ball robot has been demonstrated by experiments for balance control and arbitrary driving control.

Design and Control of Ball Robot capable of Driving Control by Wireless Communication (무선통신을 이용한 주행 제어가 가능한 볼 로봇의 설계 및 제어)

  • Lee, Seung-Yeol;Jeong, Myeong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1236-1242
    • /
    • 2019
  • Recently, according to improvement of robot technology, research for mobile robot is increasing. Mobile robot having 2-wheels or 4-wheels is easy for straight driving but is difficult for direction change and rotation. So, ball robot having one contact point with base is interested by researchers. By characteristics of the one contact, ball robot is required the balancing and driving control. In this paper, smart phone application, which is usable for control by wireless communication, is proposed. The ball robot having the proposed smart phone application is designed and manufactured. Balancing and driving control by wireless communication is conducted. From the test, it is conformed that ball robot has the control performances as roll angle error is ±0.8deg, pitch angle error is ±0.7deg, x-axis position error is ±0.1m, and y-axis position error is ±0.08m for 1m driving control.

Development of a Human-Sized Biped Walking Robot (인체형 이족보행로봇의 개발)

  • 최형식;박용헌;김영식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.484-491
    • /
    • 2002
  • We developed a new type of human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The robot overcomes the limit of the driving torque of conventional BWRs. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has a space to board DC battery and controllers. In the performance test, the BWR performed sitting-up and down motion, and walking motion. Through the test, we found the possibility of a high performance biped-walking.

Design of Ball and Plate Robot controller using Single Camera (단일 Camera를 이용한 Ball and Plate 로봇 제어장치 설계)

  • Park, Yi-Keun;Park, Ju-Youn;Park, Seong-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.213-225
    • /
    • 2013
  • This paper proposes a design method of ball-plate robot controller using single camera and two motors to balance the ball on plate and reduce steady state control error. To design the ball-plate system, it is necessary to observe state of the ball and maintain balance of the plate. The state of the ball is tracked by using the CAMShift algorithm and position error of the ball is compensated by the Kalman filter. Balance of the plate is controlled by driving two motors and we used DC motors which has smaller measurement error. Due to surface condition of the plate or tracking error of ball's position, there are small errors remained. These errors are accumulated and disturb maintaining balance of the ball. To handle the problem, we propose a controller supplemented with an integrator.