• Title/Summary/Keyword: balancing mechanism

Search Result 156, Processing Time 0.024 seconds

Request Distribution for Fairness with a Non-Periodic Load-Update Mechanism for Cyber Foraging Dynamic Applications in Web Server Cluster (웹 서버 클러스터에서 Cyber Foraging 응용을 위한 비주기적 부하 갱신을 통한 부하 분산 기법)

  • Lu, Xiaoyi;Fu, Zhen;Choi, Won-Il;Kang, Jung-Hun;Ok, Min-Hwan;Park, Myong-Soon
    • The KIPS Transactions:PartA
    • /
    • v.14A no.1 s.105
    • /
    • pp.63-72
    • /
    • 2007
  • This paper introduces a load-balancing algorithm focusing on distributing web requests evenly into the web cluster servers. The load-balancing algorithms based on conventional periodic load-information update mechanism are not suitable for dynamic page applications, which are common in Cyber Foraging services, due to the problems caused by periodic synchronized load-information updating and the difficulties of work load estimation caused by embedded executing scripts of dynamic pages. Update-on-Finish algorithm solves this problem by using non-periodic load-update mechanism, and the web switch knows the servers' real load information only after their reporting and then distributes new loads according to the new load-information table, however it results in much communication overhead. Our proposed mechanism improve update-on-finish algorithm by using K-Percents-Finish mechanism and thus largely reduce the communication overhead. Furthermore, we consider the different capabilities of servers with a threshold Ti value and propose a load-balancing algorithm for servers with various capabilities. Simulation results show that the proposed K-Percents-Finish Reporting mechanism can at least reduce 50% communication overhead than update-on-finish approach while sustaining better load balancing performance than periodic mechanisms in related work.

Congestion-Aware Handover in LTE Systems for Load Balancing in Transport Network

  • Marwat, Safdar Nawaz Khan;Meyer, Sven;Weerawardane, Thushara;Goerg, Carmelita
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.761-771
    • /
    • 2014
  • Long-Term Evolution employs a hard handover procedure. To reduce the interruption of data flow, downlink data is forwarded from the serving eNodeB (eNB) to the target eNB during handover. In cellular networks, unbalanced loads may lead to congestion in both the radio network and the backhaul network, resulting in bad end-to-end performance as well as causing unfairness among the users sharing the bottleneck link. This work focuses on congestion in the transport network. Handovers toward less loaded cells can help redistribute the load of the bottleneck link; such a mechanism is known as load balancing. The results show that the introduction of such a handover mechanism into the simulation environment positively influences the system performance. This is because terminals spend more time in the cell; hence, a better reception is offered. The utilization of load balancing can be used to further improve the performance of cellular systems that are experiencing congestion on a bottleneck link due to an uneven load.

Load Balancing Approach to Enhance the Performance in Cloud Computing

  • Rassan, Iehab AL;Alarif, Noof
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.158-170
    • /
    • 2021
  • Virtualization technologies are being adopted and broadly utilized in many fields and at different levels. In cloud computing, achieving load balancing across large distributed virtual machines is considered a complex optimization problem with an essential importance in cloud computing systems and data centers as the overloading or underloading of tasks on VMs may cause multiple issues in the cloud system like longer execution time, machine failure, high power consumption, etc. Therefore, load balancing mechanism is an important aspect in cloud computing that assist in overcoming different performance issues. In this research, we propose a new approach that combines the advantages of different task allocation algorithms like Round robin algorithm, and Random allocation with different threshold techniques like the VM utilization and the number of allocation counts using least connection mechanism. We performed extensive simulations and experiments that augment different scheduling policies to overcome the resource utilization problem without compromising other performance measures like makespan and execution time of the tasks. The proposed system provided better results compared to the original round robin as it takes into consideration the dynamic state of the system.

Research on the Mechanism of Neutral-point Voltage Fluctuation and Capacitor Voltage Balancing Control Strategy of Three-phase Three-level T-type Inverter

  • Yan, Gangui;Duan, Shuangming;Zhao, Shujian;Li, Gen;Wu, Wei;Li, Hongbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2227-2236
    • /
    • 2017
  • In order to solve the neutral-point voltage fluctuation problem of three-phase three-level T-type inverters (TPTLTIs), the unbalance characteristics of capacitor voltages under different switching states and the mechanism of neutral-point voltage fluctuation are revealed. Based on the mathematical model of a TPTLTI, a feed-forward voltage balancing control strategy of DC-link capacitor voltages error is proposed. The strategy generates a DC bias voltage using a capacitor voltage loop with a proportional integral (PI) controller. The proposed strategy can suppress the neutral-point voltage fluctuation effectively and improve the quality of output currents. The correctness of the theoretical analysis is verified through simulations. An experimental prototype of a TPTLTI based on Digital Signal Processor (DSP) is built. The feasibility and effectiveness of the proposed strategy is verified through experiment. The results from simulations and experiment match very well.

Migration Mechanism of Communication Process for Load Balancing and Accuracy Improvement (균등 부하분산과 응답 정확도 향상을 위한 처리 이전 기법)

  • Lee, Shineun;Yoon, Gunjae;Choi, Hoon
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.26-31
    • /
    • 2016
  • Migrim(Migration enhanced Grid Middleware) is a communication middleware between embedded devices and multiple servers. In traditional client-server communication, users' requests are sent to and processed by a designated server even though the server may suffer from a heavy load. In addition, the designated server may not have proper information to process the user's request correctly. Proposed connection migration mechanism and transaction migration mechanism are designed to improve the performance and accuracy of request processing. The connection migration is a procedure for delegating a connection to another server, which results in a well-distributed balancing of load among the servers. The transaction migration is a procedure for delegating a transaction to another server, and improves the accuracy of response.

SD-WLB: An SDN-aided mechanism for web load balancing based on server statistics

  • Soleimanzadeh, Kiarash;Ahmadi, Mahmood;Nassiri, Mohammad
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.197-206
    • /
    • 2019
  • Software-defined networking (SDN) is a modern approach for current computer and data networks. The increase in the number of business websites has resulted in an exponential growth in web traffic. To cope with the increased demands, multiple web servers with a front-end load balancer are widely used by organizations and businesses as a viable solution to improve the performance. In this paper, we propose a load-balancing mechanism for SDN. Our approach allocates web requests to each server according to its response time and the traffic volume of the corresponding switch port. The centralized SDN controller periodically collects this information to maintain an up-to-date view of the load distribution among the servers, and incoming user requests are redirected to the most appropriate server. The simulation results confirm the superiority of our approach compared to several other techniques. Compared to LBBSRT, round robin, and random selection methods, our mechanism improves the average response time by 19.58%, 33.94%, and 57.41%, respectively. Furthermore, the average improvement of throughput in comparison with these algorithms is 16.52%, 29.72%, and 58.27%, respectively.

Modular Multilevel Converter Based STATCOM Topology Suitable for Medium-Voltage Unbalanced Systems

  • Pirouz, Hassan Mohammadi;Bina, Mohammad Tavakoli
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.572-578
    • /
    • 2010
  • This paper discusses a transformerless shunt static compensator (STATCOM) based on a modular multilevel converter (MMC). It introduces a new time-discrete appropriate current control algorithm and a phase-shifted carrier modulation strategy for fast compensation of the reactive power and harmonics, and also for the balancing of the three-phase source side currents. Analytical formulas are derived to demonstrate the accurate mechanism of the stored energy balancing inside the MMC. Various simulated waveforms verify that the MMC based STATCOM is capable of reactive power compensation, harmonic cancellation, and simultaneous load balancing, while controlling and balancing all of the DC mean voltages even during the transient states.

Load Balancing and Reporting for Efficient Transmit over Heterogeneous Network Environments (다중 네트워크 환경에서 효율적 전송을 위한 Load Reporting and Balancing 기법)

  • Son, Hyuk-Min;Park, Su-Young;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.249-250
    • /
    • 2008
  • In the field of mobile communications, load balancing between 3GPP LTE and other networks is expected to be an important topic from the perspective of current technical development. The load balancing technique includes the definition of functions and structures needed to incooperate 3G LTE E-Node B and base-stations designed for heterogeneous networks. The major goal attained from this paper is to ensure an algorithm for the mechanism of load balancing and to achieve a technical leading for the next generation mobile network.

  • PDF

Implementation and Balancing Control of One-Wheel Robot, GYROBO (외바퀴 구동 GYROBO의 제작 및 밸런싱 제어 구현)

  • Kim, Pil-Kyo;Park, Junehyung;Ha, Min Soo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.501-507
    • /
    • 2013
  • This paper presents the development and balancing control of GYROBO, a one wheeled mobile robot system. GYROBO is a disc type one wheel mobile robot that has three actuators, a drive motor, a spin motor, and a tilt motor. The dynamics and kinematics of GYROBO are analyzed, and simulation studies conducted. A one-wheeled robot, GYROBO is built and its balancing control is performed. Experimental studies of GYROBO's balancing abilities are conducted to demonstrate the gyroscopic effects generated by the spin and tilt angles of a flywheel.

Soft Load Balancing Using the Load Sharing Over Heterogeneous Wireless Networks (이기종 무선 환경에서 Load sharing을 이용한 Soft Load Balancing 기술)

  • Son, Hyuk-Min;Lee, Sang-Hoon;Kim, Soo-Chang;Shin, Yeon-Seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.757-767
    • /
    • 2008
  • Start Ongoing next generation networks are expected to be deployed over current existing networks, in the form of overlayed heterogeneous networks, in particular, in hot spot areas. Therefore, it will be necessary to develop an interworking technique such as load balancing, to achieve increased overall resource utilization in the various heterogeneous networks. In this paper, we present a new load balancing mechanism termed 'soft' load balancing where the IP(Internet Protocol) traffic of a user is divided into sub-traffic, each of which flows into a different access network. The terminology of soft load balancing involves the use of both load sharing and handover techniques. Through a numerical analysis, we obtain an optimal LBR (Load Balancing Ratio) for determining the volume of traffic delivered to each network over an overlayed multi-cell environment. Using the optimal LBR, a more reliable channel transmission can be achieved by reducing the outage probability efficiently for a given user traffic.