2 MH SHAE0IM Cyber Foraging 88 218 HIF7|E 2ot dilg 9 2ot 24 718 63

AW ZF# A€l A Cyber Foraging <8< 3
vl F714 Bat BAE B3 2 24 7)Y

XiaoYi Lu' - Zhen Fu' - & o o« .

0x
1]

o3
1o
=
\2|'
3
3
08
’,
o3

o4

B ERM) Ay FeE2E #AA) 2359 S A% B8 B4 v1ES ARt AT 18 8 AR B sy 7
8 BAF 7ol Briskg 2e AR B3 so)Xo] ¥3Y AAYEEY A AR wEo Cyber Foraging A¥& 22 4 9 $&
z2adMe AFEA gk ol 28 98 Update-on-Finish F8F B4 dn2iF&Fe wF2138¢ 2a AN e A48 g 9
QA E HF7)AA 5 g2 F AnEY A4 Ra ARE ¢ $ ok 29% A4 A we ¥ 24 2AES A Foh 3
% Update-on-Finish ¢3al&el 24§ B3t ARE fAs7] 98 A £/} ages §AHE 7t B =AM 2 st K%Y 2]
KX = =1

seo] e 7 nes] Az de
= wgs SudEos st Adstn ok ABdeld At
22 500 o] FA RaE gRAIEA, 71E F14 2a

& vhR ¥ wFEUE Re AR RuE SdoiRsigarz wEe Zﬂ"“ﬂ‘:‘r. TS Ave A
threshold Tizt& ALTozH thddt Mz 588 /12 AHSLS g

olA At K-Percent-Finish Reporting %82 Update-on-Finish %
Ay A 7k} #E AT1ERY FAE A|AE

n

My

N
2

q
A FEE HogFm i)

JIRE MY SAE, Rat B, 53 YHOIX], MY 53

Request Distribution for Fairness with a Non-Periodic Load-Update Mechanism
for Cyber Foraging Dynamic Applications in Web Server Cluster

t+ T

XiaoYi Lu' - Zhen Fu" - Wonil Choi® - Jung Hun Kang™ - MinHwan Ok™ - Myong-Soon Park

ABSTRACT

This paper introduces a load-balancing algorithm focusing on distributing web tequests evenly into the web cluster servers. The
load-balancing algorithms based on conventional periodic load-information update mechanism are not suitable for dynamic page
applications, which are common in Cyber Foraging services, due to the problems caused by periodic synchronized load-information
updating and the difficulties of work load estimation caused by embedded executing scripts of dynamic pages. Update-on-Finish algorithm
solves this problem by using non-periodic load-update mechanism, and the web switch knows the servers’ real load information only after
their reporting and then distributes new loads according to the new load-information table, however it results in much communication
overhead. Our proposed mechanism improve update-on—finish algorithm by using K-Percents-Finish mechanism and thus largely reduce
the communication overhead. Furthermore, we consider the different capabilities of servers with a threshold Ti value and propose a
load-balancing algorithm for servers with various capabilities. Simulation results show that the proposed K-Percents-Finish Reporting
mechanism can at least reduce 50% communication overhead than update-on—finish approach while sustaining better load balancing
performance than periodic mechanisms in related work.

Key Words : Web Server Cluster, Load Balancing, Dynamic Web Pages, Server Capability

1. Introduction computational and storage capabilities of mobile devices
by exploiting nearby compute and data staging servers.
Cyber foraging [11 is a mechanism to augment the Cyber foraging uses opportunistically discovered servers

in the environment to improve the performance of inter-

* . . . : .
ﬁﬂmnsegv %r;{tﬁf: ngg;”gfg;ingﬁ ?ﬁg%%ﬁmgaéﬁ g’(ggfllég?nd active applications and distributed file systems on mobile

t2 3 Y:uagdw];Hﬁ]—o.] EEEASE S PSRN Bl : : :
HE %: Telgea s 74EE1 5 A aeas clients. And the nearby discovered servers, which are
A 3 YT ACI)E C’HL%J Kl °‘°4?°1 called surrogates in cyber foraging, work together to
it A 3] 4 vE sty AR 25 AR X X
=R 0060 129 2801 Au}sﬂrg 2007 2¢ 1Y handle incoming request, and this working mechanism is

64 JEMEIEF =X A HH4-AT M1=(2007.2)

similar to web server cluster. In web clusters, all the
web servers work with each other handling incoming re-
quests, and there is usually a central web switch taking
charge of distributing incoming requests among the web
servers. The distribution of requests has a great affection
over the performance of the web cluster system, and thus
inducing an important research topic for web clusters:
load-balancing among web servers, the purpose of which
is to balance the load among servers and avoid any
server over-loaded, and thus increases the system stahil-
ity and improves the communication between different
servers in the system. Similarly, load balancing for surro-
gates in cyber foraging is important too, and we can ar—
range all the surrogates in a server cluster manner, in
which one surrogate works as web switch and distribute
requests to other surrogates. In this way, we can use the
same load balancing mechanism of web server clusters to
distribute request fairly in cyber foraging.

There have been many researches on load-balancing in
request distribution for web cluster [3], [4], [5]; however
most of them only focus on static web pages rather than
dynamic web pages which are embedded with executing
scripts. Dynamic web Scripting applications are increas-
ingly popular in recent years and they are common used
in cyber Foraging, e.g. remote execution [1]. Generally, it
is very difficult to assess the workload of the servers
running dynamic applications. The reason is the scripts
execution is usually embedded inside the web pages.
Thus, the difficulty makes it complicated to design the
workload assessment algorithm for network switch which
has a requirement of the high efficiency. Even if the net-
work switch’s capability can achieve the requirement,
most of the load-balancing algorithms still have an in-
herent problem on scalability in the load-information ex—
changing mechanism.

In the next section, some recent related works are in-
troduced, and our non-periodic load-update mechanism for
load-balancing is described in section 3. In the first part
of section 3, we assume all the servers have the same
capability, while in the second part of section 3, we fur-
ther extent our idea by considering the different capa-
bilities of web servers. Performance evaluation and com-
parison with related works is shown in Section 4, and we
will conclude our work in Section 5.

2. Related Works

Many load-balancing mechanisms have been proposed
which can be mainly categorized into two kinds, static
and dynamic load-balancing. Static load-balancing does

not consider current load on- web servers while dynamic
load-balancing mechanism cares about the server's cur-
rent load before distributing requests. Random and
Round-Robin are two representative algorithms for static
load-balancing, and their purpose is to reduce the burst
in the request arrival stream to every single web server
[5], [6]. In a random allocation, the requests are assigned
to any server picked randomly among web server
clusters. In a Round-Robin algorithm, the first request is
allocated to a server picked randomly from all the web
sefvers, and for the subsequent requests, the web switch
follows the circular order to redirect the request. Once a
server is assigned a request, the server is moved to the
end of the list. This keeps the servers equally assigned.

Weighted Round-Robin (WRR) improves Round-Robin
by considering the current load of web server [2]. WRR
uses periodic load information update. The web switch
collects each server's load information periodically, and
after it realizes each server’s load, it sends requests to a
less loaded server with a higher rate while sends re-
quests to a more loaded server with comparative lower
rate until each server reach equal loads before the next
load-information updates. With the knowledge of dynam-
ically changing load information of web servers, WRR
can get better performance than Round-Robin.

Dahlin’s algorithm [8] outperforms WRR by exploiting
the advanced update mechanism of load-information [9].
Dahlin’s algorithm also uses periodic load-information
update. The web switch realizes the differences in loads
between servers by load-information update. It sends re-
quests to servers with least loads. After this duration, all
the server's loads are equalized to the most loaded server.

Both WRR and Dahlin’s algorithm require knowing the
current load of web Server to distribute the requests.
However nowadays, there are dynamic web pages created
in Java, PHP, ASP and so on, thus it is difficult to esti-
mate the load of these web pages, even with the in-
formation from the application layer, due to executing
scripts embedded in the pages. Although such an estima-
tion algorithm might exist, the web switch cannot use a
highly sophisticated algorithm in distributing requests,
since it has to take immediate decisions for hundreds of
thousands of requests per second. For the weighing dy-
namic web pages is far different from that of static web
pages, it is not an appropriate respect in applying WRR
or Dahlin.

Moreover, both WRR and Dahlin’s algorithm periodically
updates web server’s load information, which means the
web switch should check out the load information of

4 M SHAEHOIA Cyber Foraging SE& 2ITt BIF7IN 2ot A

HTTP
Raquest

Rauter

.............

Web Server 1 Web Servel

(Fig. 1) Web server cluster with isolated system network

all the web servers simultaneously and periodically. From
Figure 1 we can see that requests are distributed from
the web switch through the isolated network. The web
switch should update the load-information of all web
servers in prior in order to distribute the requests evenly.
Conventionally, all the servers report their load-in-
formation to the web switch at any given rate and the
load-information of all the servers should be updated
synchronized. If the load-information updates are not
synchronized in this kind of periodic load-balancing
mechanism, the load-information of some servers should
be obsolete, and thus the load-balancing algorithm will
not work, synchronicity is strongly required here. At the
same time, due to synchronized reporting, a number of
report packets are concentrated at the web switch from
all the web servers and the web switch requires a term
to receive all the report packets. If there are many serv-
ers, the number of report packets would be large and the
term is not neglectable, and for the web switch can not
distribute any requests during this term, the load-balanc-
ing mechanism can not get expected performance. What
is more, in the traditional periodic load information update
mechanism, the decision of reporting time interval is only
is depending on a tradeoff between load-balancing per-
formance and communication overhead, and can not re-
flect any current working status of servers, which means
no matter how many requests are queued on a server
and whether the server has the ability to process more
requests, it send a report to the switch at any predefined
time interval. Non-periodical Joad information update
mechanism improved the idea of periodical reporting by
allowing all the servers not reporting simultaneously and
the reporting time of each server is depending on its own
working status, e.g. Update-on-Finish[9] , in which each
server reports when the number of executing requests

o
ol

of 2ot 2ot 7Y 6

decreases that n more requests are needed.
Update-on-Finish [9] reporting is based on non-peri-
odic load information update, and since each server re-
ports when one of its queuing requests is finished, all the
report packets are not concentrated at any instant, and
thus the bottleneck at the web switch caused by period-
ical update can be avoided. However since in [9], when-
ever a server finish executing a request, it should send a
report to the web switch, the communication over head
between servers and web switch is high. In this paper,
we adopt non-periodic updating mechanism, and in the
first part of the proposed mechanism, we suppose all the
servers having the same capability and each server sends
a report to web switch when K percents of its queuing
requests have been finished. By properly setting the K
value, the communication overhead can be largely reduced
with Update-on-Finish [9]
Furthermore, since servers are usually different from each

comparing mechanism.
other in their performance since they may have different
CPU capahilities, different memories, and different stabil-
ity of network connection status etc. Especially for cyber
foraging, since the communication between mobile clients
and a surrogates is via short-range wireless peer—to-peer
technology [10], the different wireless connectivity sta-
tuses strongly affect the overall performance. So in this
paper, we further consider the different capabilities of
servers in the second part of proposed mechanism to de-
cide reporting time.

In the following part, our proposed load-balancing
mechanism for cyber foraging which is based on non-—pe-
riodic load information update is described in detail.

3. Non-Periodic Load-Update Algorithm for Load-
Balancing

Depending on whether consider the requests content
type, web switches are broadly classified into Layber-4
and Layer-7 web switches [11]. Layer-7 load balancing,
also known as application-level load balancing, is to parse
requests in application layer and distribute requests to
servers based on different types of request contents.
However, because many servers may have same contents,
we can apply load-balancing algorithms to those servers
after applying the contents-based algorithms first. Our
purpose in this paper is to get better service by selecting
proper servers among the servers which have same
contents. Therefore we assume that the all servers have
same contents.

Also, we mainly focus on the processing of dynamic

66 FEAMeiStpl=FR A M14-AT M1=(2007.2)

web pages. Since the executing scripts of dynamic web
pages require additional computing cost and execution
time, and the execution time of scripts is usually different
among dynamic web pages, we call this execution time
Execution Length, which is not deterministic and hard to
know before finishing execution. So it is obvious that ex—
ecution length is not suitable for evaluating load-balancing.
In the first part of the proposed idea, we suggest the
run-queue length best describes a server’s load which is
the same as the previous work [7] and use it as the per-
formance evaluation metric. And in the extended idea
part, where we further consider the different capabilities
of servers, we use the occupation of a server's resources
as the evaluation metric, and the goal of load balancing
under this metric is to let all the servers contribute the
same percentage of their abilities into requests execution.

3.1 K-Percents-Finish Reporting Mechanism

In this section, we are going to describe our first pro-
posed load-balancing mechanism, in which each server
reports to web switch when K percents of their current
loads finished, and K here is a threshold value to decide
reporting occasion. There are some assumptions support—
ing this idea:

@D In this part, there are enough incoming requests,
which means the arrival rate of requests is big
enough that before a web server finishes a request,
a new request will be distributed to it, thus the sit-
uation of server halt without any request will not
happen and load-balancing is necessary at anytime.

@ After the web switch compensates each web server,
no reporting from each server will happen untl a
server finishes K percent of its current requests.

® Using run-queue length describes a server’s load

@ All the web servers have the same processing ca-
pability, as well as the same network connection
quality.

Based on these assumptions, our load-balancing algo-
rithm with the same capability web servers can be de-
scribed as following steps:

@ At the initial step, the web switch simply distrib-
utes the incoming requests to all the servers in
“Round-Robin” manner. And the data structure de-
sign of distribution list here is the same as
Round-Robin. As a result, equal numbers of re-
quests are executed in the servers.

@ Each server has a table recording how many re-
quests have been finished. When a web server fin-
ishes executing a request, it adds one to the fin-
ish-request table and checks its loads whether the

Number of finished requests/Number of current load
is bigger than k, which indicates K percentage of
current loads has been finished. If so, it sends a
report to the web switch and sets the finish-request
table to zero, otherwise, it continues executing
queued requests.

@ If new requests come to web switch when no re-
port from any web server is made, the switch
would continually use “Round Robin” to distribute
requests among web servers.

@ When the web switch receives a report from a
server, it grants a priority to the server according
to the order of arriving reports, the server which
sends the report firstly gets the highest priority,
and the servers which have not reported yet have
lowest priority.

® New incoming requests are distributed to servers
like this: the server with the highest priority will be
put to the head of distribution list and be the first
one to get the new distributed requests, and the
lower the priority is, the later the server gets dis—
tributed requests.

® Procedure continues from the second step.

In our proposed mechanism, each web server makes no
report until K percent of their current load is done. And
the operation of web switch is quite easy for it does not
need to know load information before server reports and
only need to re-arrange “Round-Robin” schedule accord-
ing to reported information. In the simulation part, we
will show how different K values affect the system
performance. By properly setting up the K value, our
proposed mechanism can well outperform previous
approaches.

3.2 Load Balancing Considering Different Server Capabilities

In section 3.1, we suppose that all the web servers
have the same processing capability and no difference be-
tween them when handling incoming requests. But in real
use, we can not expect all the servers have exactly the
same processing capability, servers are usually different
from each other in terms of different storages, CPU ca-
pabilities, and different amount of RAM and ROM, and all
these appended with the different stability of network con-
nection status make the performance of servers vary a lot.

In this section, our proposed algorithm is based on the
common accepted truth that with some optimization tech-
niques, performance gain can be achieved by sending dis-
proportionately high fraction of workload to the server of
higher capability.

If we consider the different capabilities of web servers,
only using run-queue length as the evaluation metric is

H Mu! S2HAEIOA Cyber Foraging

not suitable. Servers which have better processing capa-
bility can finish executing requests faster, thus if we
simply grant all the web servers with the same number
of requests to balance the load, the more capable servers
can finish their tasks early and have halt time.

In this section, we use the usage percentage of a web
server's resources as the performance evaluation metric,
and the load balance goal here is to let all the web serv-
ers use the same percentage of their resources, which
means all the web servers should contribute the same
percentage of their capabilities into request execution.

First, the parameters used are listed as below:

1’ the number of web servers

I 1<i<n, indicate the serial number of web servers

wy the weight of web server i when the web switch
distribute requests

I& the current real load of server i (not only consider
run—queue length but also consider the occupation
of a server's capabhility)

ri the using percentage of resource j

aij-' the weight of resource j of server i

u; the resource using status of server i

Ry the run-queue length of server i

rjcpu.' the using percentage of CPU of server i

Fonem the using percentage of memory of server i

s the using percentage of network resources of

server i

In this part, different servers have different weight
values which can indicate their processing capability.
These weight values are obtained from history requests
executing experience, and servers with better performance
history have higher w; value. When the web switch dis—
tributes requests, the web servers with higher weight
value w; will be given more requests, and each web
server can be indicated as a vector si={ i, w; A

Further more, we use the equation (1) to indicate the

a.
resource using status of server i, in which & =1

ne 2 M

For different using purpose, different kinds of resources
will be the most important factors affecting the perform-
ance of web server, but among them, the most common
factors are the usage of CPU, memory and network
resources. So we can simply use equation (2) to describe
the resource using status of each web server:

U, =Qr, + B, + Ve @)

olo

E2 #Iot nI=/IA 28 g o 2t 24 7Y 67

In equation (2), a , B and y stands for the weighting
value of CPU, memory, and network resources of each
server separately. And these values are decided according
to different kinds of requests, for some complicated com-
putation requests, a requires heavier weight because CPU
is the most important factor to execution while for some
/O requests, network status is more important and thus
y requires bigger weight value. But in our paper, we do
not consider the request type, so we simply use a=0.25, 3
=0.25 and y=05 as weight value.

In this part, the decision of request distribution de-
pends on the real load I'y of each server, which considers
not only the server's run-queue length R; but also its re-
source using status u; and its weight value w;. We use
equation (3) here to denote 'y and the incoming request
is firstly sent to the server with the minimum Iy value:

i=min(l})

w, 3

The report mechanism here is similar as the first part:
we set up a threshold value 7T; for deciding the report
time.

At the initial step, the web switch still simply distrib-
utes incoming requests to all the servers in “Round-
Robin”. After this step, each server has the same number
of requests waiting to be executed. Whenever a server
finishes executing a request, it checks out its Iy value, if
I'4 is still above the threshold value T, the server i con-
tinues executing queued requests without any other oper—
ation, else if I goes below the threshold value Tj, the
server i sends a report to the web switch. When the web
switch receives a report, it records the server's vector
si={ i, wi } and its I'4 value, and puts recorded value into
its load information table. And here the web server with
the minimum /4 value, which i=min(’;}) will be granted
with the highest priority, and among the reported servers,
the higger the [y value is, the lower priority it will be
granted, and the servers that have not report yet still
have the lowest priority. And the following step is the
same as step 5 and 6 in section 3.1.

This report on threshold value algorithm is used to
decide report time according to each server's real load la.
In this way, when a web server finds its real load Iy
goes below the threshold value T;, which means it fin-
ishes several requests and have spare resources and ca—
pability to handle more requests, it reports to the web
switch, and new requests will be sent to it, and the more
resources it spares, the sooner it gets new incoming

68 FEMEIET=EX A ®14-AT M1=(2007.2)

requests. As a result, no server will be overloaded or
idle, and the contribution percentage of servers' capa-
bilities is the same after load balancing.

The proper value of T; is decided through real simu-
lation, and to simplify the discussion, we suppose all the
web servers adopt the same T; value.

4. Performance Evaluation

The main goal of the experimentation described here is
to evaluate the performance of the proposed algorithm
and compare it with other related works. We will firstly
evaluate its load balancing performance in evenly request
distribution, and then see its affection to communication
overhead.

4.1 Experimental Methodology

Figure 2 is the topology we used in the experiments.
The web server cluster contains one gateway, one load
balancer and 3 web servers. Detailed descriptions of the
nodes in the testing bed are showed in the Table 1.

(Fig. 2) Network Topology

42 Result and Analysis

In the simulation, to evaluate the performance under
heavy workload, the client gateway was set to send
heavy HTTP requests to the load balancer to distribute
them to web servers.

4.2.1 Evaluation of plain Round Robin and Dahlin

All of the evaluations lasted for about 10 hours. And
the Average traffics under Round-Robin algorithm that
the nodes received are as showed in table 2 and table 3:

Figure 3 and Figure 4 states the statistics under plain
round robin, whereas Figure 5 and Figure 6 show the re-
sult under dahlin:

1600

i

8

1000 |

Load at Plain Round Rabin (packets)

Time (sec) x 10"

(Fig. 3) Load (packets) of Plain Round-Robin

—

©
@ @ a

~
3

Load of Piain Founa Rabin (packetsésec)
@

Time (3a0) x1a'

(Fig. 4) Load (packets /sec) of Plain Round-Robin

(Table 1> Network nodes description

Server

Supported Protocols: UDP, IP, Ethernet, RIP, TCP, OSPF
Port Interface Description'Ethernet connection at 10 Mbps, 100 Mbps, or 1000 Mbps

Load Balancer Device Name: load_balancer_el6

preconfigured servers

The load_balancer_el6 models a device which intercepts internet application traffic and sends it to one of a list of

Server_fam_gateway | Vendor: Cisco Systems Product: CISC0O4000

Device Class: Router

{Table 2) Traffic of load balancer under plain Round-Robin

Node Load Balancer Traffic Load Balancer Traffic Load Balancer Traffic Load Balancer Traffic Sent
Received (bytes/sec) Received (packets/sec) Received (packets/sec) (packets/sec)
Load balancer 1,693/815/782 1.39/0.67/0.64 151/73/70 1.06/0.51/0.49
{Table 3) Traffic of web servers under plain Round-Robin.
Node Ethernet Load Ethernet Load Ethernet Traffic Ethernet Traffic Ethernet Traffic Ethernet Traffic
(bits) (bits/sec) Received (bits) | Received (bits/sec) | Received (packets) | Received (packets/sec)
serverl 6,253,930 6,254 543,090 558 477 0.79
server2 6,706,146 6,520 582,431 582 512 0.77
server3 7387458 13,544 658,152 773 579 1.06

o MH 22 AEOIM Cyber Foraging 282 2ot

800
------ Sunngate 1
7001 Surmgate 2 [4
“oes Sunogate 3
600 4
£
z
& sl 1
£
H
gt |
1
3]
%
200 - 4
100} -
o I L L ;: L L L
o 85 1 15 2 25 Kj 35 4
Time {sec} x 10
(Fig 5) Load (packets) of Dahlin
rrrrrrr Surgate 1
Sunegate 2
— Sunogate 3

Load (packats/sec) with Dahiin

Time {sec)

(Fig. 6) Load (packets /sec) of Dahlin

4.2.2 Evaluation of K-Percents-Finish Reporting
Mechanism with K value of 10%

The Average traffics under proposed algorithm of the
nodes received are showed in table 4 and tableb:

The proposed algorithm was simulated with a strategy
of on-demand load-information update. That is, only
when the current load achieves the preset threshold, the
load information will be updated. As showed in the traffic
information tables, plain Round-Robin sent 6,253,930 bits
data to the server 1 and 6,706,146 bits data to server 2
and 7,387,458 bits data to server 3. Under the same net-

HIZ=Z A Sot 8

o

10

work settings, proposed algorithm sent 3,290,061 bits data
to server 1 and 3,257,203 hits data to server 2 and
3,155,138 data to server 3. It is obvious that incoming re-
quests are distributed more evenly by proposed algorithm
than plain Round-Robin algerithm. We will analyze the
result more detailedly.

Figure 7 and & state the statistics under proposed al-
gorithm with the K threshold value of 10%.

By analyzing this evaluation result with that of plain
round robin, we can see that the packets transmitted to
the server under the proposed algorithm are more evenly
than plain Round-Robin algorithm, and thus outperform
plain round robin approach.

i

Load (packels) with K of 10%

Time (sec} x1g

(Fig. 7) Load (packets) with K of 10%

25

™

Luad (packetsisec) with K of 10%

2
Time iseq) X1

(Fig. 8) Load (packets /sec) with K of 10%

(Table 4> Traffic of load balancer with K value of 10%

Load Balancer Traffic

Load Balancer Traffic

Load Balancer Traffic

Load Balancer Traffic Sent

Node Received (bytes/sec) Received (packets/sec) Received (packets/sec) (packets/sec)
Load balancer 1,142/1,131/1,09% 0.937/0.928/0.899 101/101/97 0.715/0.709/0.686

(Table 5) Traffic of web servers with K value of 10%.

Node Ethernet Load Ethernet Load Ethernet Traffic Ethernet Traffic Ethernet Traffic EtheRneqce;\”I;afﬁc
(bits) (bits/sec) Received (bits) Received (bits/sec) | Received (packets)
(packets/sec)
serverl 3,290,061 9,139 292,112 811 258 0.716
server2 3,257,203 9,048 290,224 806 256 0.709
| serverd 3,155,138 3,764 280,640 730 247 0.687

70 FEMeIET=ER A ®HH4-AT ®M1=(2007.2)

4.2.3 Evaluation of K-Percents-Finish Reporting
Mechanism with K value of 20%

We also evaluate the algorithm performance with the
K threshold value of 20%. The traffic under the proposed
algorithm with 20% K value is showed as the table 9
and 10. We can see K of 20% can achieve better per-
formance than 10%.

We also use other K values ranging from 109~40%,
but find the load balancing performance does not change
proportionally with K value. And we find that the proper
K value also depends on different characteristics of each
system. So it is hard for us to say which K value is the
best, but we recommend a range between 20%~30% in
which can achieve better performance comparatively.

L.oad (packels) with K of 20%

(Fig. 10) Load (packets /sec) with K of 20%

4.2.4 Report on Threshold Value Algorithm

The parameters of the evaluation of the server capa-
bility concerned algorithm are set as the table 8 shows.

Here we suppose all the servers report when 50 per-
cents of their resource is available. And we adopt W=2
and R=10 for setting threshold value Ti, thus Ti=50%6*
10/2=25

Figure 11 and 12 state the statistics under server ca-
pability concerned algorithm. Compared with the K per-
cent reporting mechanism, report on threshold value algo—
rithm can balance the server load in the web cluster
more efficiently by assigning comparatively more requests
to lighter loaded servers. The system performance
changes with different Ti values. In the future work we
will focus on how to find the proper Ti value.

(Table 8) Parameter Setting.

Parameter Value
u 50%
R 10
w 2

Load (packeis) considering Server Capability

i L : L ' L L
il 05 1 15 2 25 3 as 4
Time (sec) 210

(Fig. 11) Ethernet Load (packets) with server
capability concerned

(Table 6) Traffic of load balancer with K value of 20%.

Node Load Balancer Traffic Load Balancer Traffic Load Balancer Traffic Load Balancer Traffic Sent
Received (bytes/sec) Received (packets/sec) Received (packets/sec) (packets/sec)
Load balancer 498/497/497 0.408/0.408/0.408 44.3/442/44.1 0.312/0.312/0.311

(Table 7> Traffic of web servers with K value of 20%.

Node Ethernet Load Ethernet Load Ethernet Traffic Ethernet Traffic Ethernet Traffic Ethernet Traffic
(bits) (bits/sec) Received (bits) | Received (bits/sec) | Received (packets) Received
(packets/sec)
serverl 1,857,581 3973 165,626 354 346 0.812
server2 1,966,380 3,987 174,407 354 34 0.812
server3 1,962,633 3,980 173982 353 353 0811

e Mb{ Z2e{AEOIA Cyber Foraging 288 ot HIZ7|

Suragate 2 | 4
- Surogate 3

Load (packets/sec) consiering Server Capabilty

Time (sec)

(Fig. 12) Ethernet Load (packets /sec) with server
capability concerned

4.2.5 Load-Update Overhead

From the evaluation from section 421 to section 4.2.4
we can see our proposed algorithm can sustain good load
balancing performance in evenly loads distribution. In this
part, we will see how our proposed mechanism improves
update-on—finish approach by alleviating communication
overhead.

Figure 13 shows the overhead communication during
1000 milliseconds under the proposed algorithm when K
is 20%. Here as it described in the former sections, the

T T
------- Surmgate 1
Surogate 2
Sunagate 3 | 4

Number ot Report

0 L L L L ! L L I
1000 2000 3000 48300 5000 8000 7000 2000 5000 1000¢
Time (sec)

(Fig. 13) Communication Overhead with K of 20%

Average Number of Report per Second

28
Vale ot K

(Fig. 14) Communication Qverhead with different K valugs

T
i
Q_}
N
>

=

overhead communication means the non—periodical load-update
information reporting. As the figurell shows, it states
that, as the requests are distributed to the web servers
evenly, the communication overhead of each web server
to report the load-update information to the load balancer
is similar with each other. And the communication
overhead only takes 0.5% of the traffic in average.

We have also compared load reporting overhead under
different K values. Figure 14 shows the load report
overhead in our simulation. This presents the change of
number of reports during 40000 seconds with the four K
values as well as update-on-finish approach, in which K is
regarded as 0. As the figure shows, the average number
of reports per second reduces as the K wvalue increases.
This is because with small K value, all the servers report
to web switch frequently, and thus results in much com-
munication overhead.

5. Conclusions and future work

Load-balancing algorithms founded on conventional pe-
riodic load-information update are not suitable for dy-
namic applications, which are common in Cyber Foraging,
because of the difficulty to access the workload of dy-
namic pages before finishing real execution. The proposed
algorithm is based on non-periodic load-updating mecha-
nism and since the web switch only need to re-arrange
the schedule of “Round-Robin” according to the reports
from each server, it is easy to operate and thus can
avoid the bottleneck at web switch and get higher
throughput. With the proper K value which decides the
reporting time, it also can alleviate communication over-
head caused by frequently reporting in update-on-finish
mechanism. By further considering the different capa-
hilities of servers, our proposed algorithm is more rea-
sonable for real use, and all the servers contribute their
capabilities and resources evenly after load-balancing.
Simulation results have shown that at least 50% commu-
nication overhead can be reduced compared to up-
date-on—finish approach while good performance in terms
of more evenly requests distribution than the periodic
mechanisms in related works can be sustained. To find
the proper threshold value, we would consider communi—
cation cost, CPU and memory capacity of every server,
but it would be very difficult research task. Therefore
finding proper threshold values will be left as future
works.

72 FEMEEZ=EX A M14-A H1=(2007.2)

References

[1] Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq
Sinnamohideen, and Hen-I Yang, “The Case for Cyber
Foraging”, Proc. of the 10th workshop on ACM SIGOPS
European workshop, pp.87-92, September, 2002.

[2] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu, “The
state of the art in locally distributed web-server systems,”
ACM Comput. Surv., Vol.34, No.2, pp.263 - 311, June, 2002.

[3] M. Andreolini, M. Colajanni, and R. Morselli, “Performance
study of dispatching algorithms in multi-tier web
architectures,” ACM SIGMETRICS Perf. Eval. Review,
Vol.30, No.2, pp.10 - 20, Sept., 2002.

[4] E. Casalicchio, V. Cardellini, and M. Colajanni, “Client-aware
dispatching algorithms for cluster-based web servers,”
Cluster Comp., Vol.5, No.1, pp.65 - 74, Jan., 2002.

(5] X. Tang and S.T. Chanson, “Optimizing static job scheduling
in a network of heterogeneous computers,” Proc. Conf. on
Para. Proc., pp.373 - 382, 2000.

[6] Server Load Balancing: Algorithms, Published: Monday,
May 17, 2004
http://content. websitegear.com/article/load_balance_types.htm

[7]1 T. Kunz, “The influence of different work-load descriptions
on a heuristic load balancing scheme,” IEEE Trans. Softw.
Eng., Vol.17, No.7, pp.725 - 730, July, 1991.

[8] M. Dahlin, “Interpreting stale load information,” IEEE Trans.
Parallel Distrib. Syst, Vol.11, No.10, pp.1033 - 1047, Oct., 2000.

[9] M. Ok and M.-s. Park, “Request distribution for fairness with
a new load—update mecharfism in web server cluster,”
LNCS, Vol.3222, pp.221 - 229, Oct., 2004.

[10] Sachin Goyal and John Carter, “A Lightweight Secure Cyber
Foraging Infrastructure for Resource-Constrained Devices”.
Appears in Sixth IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA2004), pp.186-195.

[11] T. Schroeder, S. Goddard, and B. Ramamurthy, “Scalable
web server clustering technologies,” IEEE Netw., Vol.14,
No.3, pp.38 - 45, May/June, 2000.

Xiaoyi Lu

e-mail : felicity_lu@ilab.korea.ac.kr
20043 Department of Computer Science
& Technology, Beijing Institute
of Technology(8tA}H)
2005 ~d A gt AFE s
EREE
A 2o} 1 ubiquitous computing, embedded
system, Ad-Hoc network,
wireless sensor network

Zhen Fu

e-mail - fuzhen@ilab.korea.ac.kr
2004 Department of Computer Science,
Wuhan University(g4H)
20051 ~ @A mejdistn FAFE &I
AANTRA
A 2o} : ubiquitous computing,
embedded system, Ad-Hoc
network, wireless sensor network

=TI

e-mail : wonil22@ilab.korea.ac.kr

2005 it gtw AFEHTH(EAD

2006 ~ A nHdetn AFE A

HAA

FAE-o} : ubiquitous computing,
embedded system, RFID,
wireless sensor network

T HE

e-mail : kjhoun@ilab.korea.ac.kr

2005 wHchetn A4keta(sHAD

20073 AW R BFEHFAAAD

A 2o} : ubiquitous computing,
embedded system, Ad-Hoc
network, wireless sensor network

2 q &
e-mail : panflute00@paran.com
1996 BAFOIEt L AT (EHAL
1998 Fateisha AAIHA AL
1999¢ ~ A zeidetn HFe s
WAL A
20013 ~20039 FA N FRFAH
ZuF
20043~ FFFEIEdTE AYdT4
A 2o} parallel processing, clustering, storage server,
load-balancing in locally distributed network.
oo
e-mail : myongsp@ilab.korea.ac.kr
19753 A&ulgte A3 (EAh
1982\ University of Utah, &3 tj8t
A7) F A AL
19851 University of Iowa, &3}tj8}
A7 2 AFE T AT EEA
1975 ~19801d It #sd 74 A4
19854 ~1987d Marquette University 7] 2 AAbzetd 24
19871 ~1988d warzvtistm Az 3 d 9 A3 a 8k
205
19883 ~AA meldsw HFE T 2s
A B ok parallel processing, clustering, Internet computing,
networks on storage, embedded systems, mobile IP
and wireless communications.

