• Title/Summary/Keyword: balanced steel ratio

Search Result 27, Processing Time 0.029 seconds

Axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.295-316
    • /
    • 2016
  • This paper presents the results of experimental investigation, numerical calculation and theoretical analysis on axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns. 17 specimens were firstly intensively carried out to investigate the hysteretic behavior of SRC special shaped columns subjected to a constant axial load and cyclic reversed loads. Two theories were used to calculate the limits of axial compression ratio for all the specimens, including the balanced failure theory and superposition theory. It was found that the results of balanced failure theory by numerical integration method cannot conform the reality of test results, while the calculation results by employing the superposition theory can agree well with the test results. On the basis of superposition theory, the design limit values of axial compression ratio under different seismic grades were proposed for SRC special shaped columns.

A Study on the Behavior of Reinforced Concrete Beams under Pure Torsion -on the Torsional Balanced-Steel Ratio- (순수비틀림을 받는 철근콘크리트 보의 거동에 관한 연구 -평형철근비를 중심으로-)

  • 박병용;음성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.69-82
    • /
    • 1990
  • This paper proposes equations for balanced-steel ratio to predict the failure types in reinforced concrete beams under pure torsion. Equations are theoretically derived using a space truss model and considering a softening effect which reduces the strength of concrete due to the diagonal crack. To investigate the validity of the proposed equations, experiments were conducted with 13 specimens. Corre¬lation between predicted failure types by balanced - steel ratio and the experimental results in the literature was good. but not for beams tested in this paper.

Review of Steel ratio Specifications in Korean Highway Bridge Design Code (Limit States Design) for the Design of RC Flexural Members (철근콘크리트 휨부재 설계를 위한 도로교설계기준(한계상태설계법)의 철근비 규정 검토)

  • Lee, Ki-Yeol;Kim, Woo;Lee, Jun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.277-287
    • /
    • 2017
  • This paper describes the specifications on balanced steel ratio and maximum reinforcement for the design of RC flexural members by the Korean Highway Bridge Design Code based on limit states design. The Korean Highway Bridge Design Code (Limit States Design) is not provide for the balanced steel ratio specification for the calculation of required steel area of RC flexural members design. The maximum steel area limited the depth of the neutral axis at the ultimate limit states after redistribution of the moment, and also recommended the maximum steel area should not exceed 4 percent of the cross sectional area. However, from the maximum neutral axis depth provisions should increase the cross section is calculated to be less the maximum reinforcement area, and according to the 4% of the cross sectional area of the concrete, the tensile strain of the reinforcement is calculated to be greater than double the yielding strain, so can not guarantee a ductile behavior. This study developed a balanced reinforcement ratio that is basis for the required reinforcement calculation for tension-controlled RC flexural members design in the ultimate limit states verification provisons and material properties and applied the ultimate strain of the concrete compressive strength with a simple formular to be applied to design practice induced. And assumed the minimum allowable tensile strain of reinforcement double the yielding strain, and applying correction coefficient up to the ratio of maximum neutral axis depth, proposed maximum steel ratio that can be applied irrespective of the reinforcement yield strength and concrete compressive strength.

An Analysis of the Reinforced Concrete Circular Ring Sector Plates with Arbitrary Boundary Conditions (任意의 境界條件을 갖는 鐵筋콘크리트 扇形板의 解析(II) - 第 2報 鐵筋比 및 邊長比의 影響 -)

  • Jo, Jin-Gu
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.78-86
    • /
    • 1992
  • This paper aims at investigating the effect of steel ratio and the magnitude of edge-ratio on the mechanical characteristics of reinforced concrete ring sector plate. The influence of steel bars was taken into account by coupling stiffness matrix of the steel bar element with that of the concrete plate element without dealing with separate element of steel bar and by establishing the composite stiffness matrix, which leads to the desirable result which does not increase th number of element could be obtained. Through case studies with 6 cases various steel ratios in ring sector plate supported at four edges and 4 cases with different open angles, the influence of the steel ratio was examined. A numerical analysis to find out the effect of the steel ratio d ue to above mentioned cases was carried out by 4 boundary conditions ; all edges clamped (B.C-1), all edges simply supported (B.C-2), curvilinear two edges clamped and other edges free (B.C-3) and curvilinear two edges simply supported and other edges free(B.C-4). The main results obtained are summarized as follows : 1. The effect of steel ratio on the magnitude of lateral deflection and x-directional bending moment at the center of sector plate and the midpoint of outer and inner curvilinear edges is almost the same up to $30^{\circ}$ of open angle. Beyond $30^{\circ}$ of the angle, the larger the angle, the greater the effect of ratio. 2. In design works using balanced steel ratio, the effect of steel bar can be ignored. But for larger open angles, especially greater than $90^{\circ}$, it proves desirable to consider the effect of steel bar. 3. The effect of the arc length of center circle/straight edge on lateral deflection and bending moment is remarkable in B.C-2. For larger open angle, the effect is also noted except for B.C-3 which turn out hardly affected. 4. The effect of the radius of curvature/straight side length on lateral deflection and x-directional bending moment is noted in B.C-2. As open angle increases, B.C-1 and B.C-3 almost agree and B.C-2 approaches B.C-4.

  • PDF

Flexural behavior of ultra high performance concrete beams reinforced with high strength steel

  • Wang, Jun-Yan;Gu, Jin-Ben;Liu, Chao;Huang, Yu-Hao;Xiao, Ru-Cheng;Ma, Biao
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.539-550
    • /
    • 2022
  • A detailed experimental program was conducted to investigate the flexural behavior of ultra high performance concrete (UHPC) beams reinforced with high strength steel (HSS) rebars with a specified yield strength of 600 MPa via direct tensile test and monotonic four-point bending test. First, two sets of direct tensile test specimens, with the same reinforcement ratio but different yield strength of reinforcement, were fabricated and tested. Subsequently, six simply supported beams, including two plain UHPC beams and four reinforced UHPC beams, were prepared and tested under four-point bending load. The results showed that the balanced-reinforced UHPC beams reinforced with HSS rebars could improve the ultimate load-bearing capacity, deformation capacity, ductility properties, etc. more effectively owing to interaction between high strength of HSS rebar and strain-hardening characteristic of UHPC. In addition, the UHPC with steel rebars kept strain compatibility prior to the yielding of the steel rebar, further satisfied the plane-section assumption. Most importantly, the crack pattern of the UHPC beam reinforced with HSS rebars was prone to transform from single main crack failure corresponding to the normal-strength steel, to multiple main cracks failure under the condition of balanced-reinforced failure, which validated by the conclusion of direct tensile tests cooperated with acoustic emission (AE) source locating technique as well.

A Study on the Flexural Behavior of Reinforced High Strength Lightweight Concrete Beams With Web Reinforcement (전단보강된 고강도경량콘크리트 보의 휨거동에 관한 연구)

  • 오창륜;김재식;곽윤근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.513-518
    • /
    • 1998
  • In general, flexural strength and ductility of reinforced concrete beam with stirrup depend on the compressive strength of concrete and longitudinal steel ratio. In this study, nine reinforced high strength lightweight concrete beams and three reinforced normalweight concrete beams with stirrup were tested to investigate their behavior and to determine their ultimate moment capacity. The variable were strength of concrete (400, 500kg/$\textrm{cm}^2$) and the ratio of tensile steel content to the ratio of the balanced steel content(0.22<$\rho$/$$\rho$_b$<0.56). Test results are presented in terms of load-deflection behavior, ductility index, and cracking patterns.

  • PDF

Effect of Steel Reinforcement Ratio on the Flexural Behavior of RC Beams Strengthened with CFRP Sheets (탄소섬유쉬트로 보강된 RC부재의 철근량에 따른 휨 보강성능)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.177-180
    • /
    • 2006
  • Experimental study has been performed in order to evaluate the effects of steel reinforcement ratio on the flexural behavior of RC beams strengthened with CFRP sheets. The steel reinforcement ratio of $0.78%({\rho}_s/{\rho}_b=24%)$ is selected to have balance failure when control RC beams were strengthened with 1 ply CFRP sheet. Total 6 half-scale specimens were manufactured including each unstrengthened specimens, which have 3 different reinforcement ratios. The specimens strengthened with CFRP sheet consist of under- or over-reinforced beams for the balanced failure condition. Moreover, the behavior of un strengthened or strengthened beams were compared to evaluate flexural performance. The results of this study show that the over-reinforced specimens were failed by concrete crushing prior to CFRP sheet failure by debonding or rupture. On the contrary, the under-reinforced specimen were failed by rupture of CFRP sheet.

  • PDF

An Experimental Study on Failure Modes of High Strength Reinforced Concrete Columns (고강도 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • 최창익;박동규;손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • With increasing use of high strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of current design codes. High strength concrete has an advantage of strength capacity and stiffness especially for column elements. This paper presents an experimental study of high strength concrete tied columns subjected to eccentric loading. The main variables included in this test were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 34.9Mpa(356kg/$\textrm{cm}^2$ ) to 93.2Mpa(951kg/$\textrm{cm}^2$ ) and the longitudinal steel ratios were between 1.1% and 5.5%. The eccentricity was selected for the different failure modes, i.e., compression control, balanced point, and tension control. The slenderness ratio varied from 19 to 61. The column specimens with same slenderness ratio but with different concrete compressive strength were constructed and tested. The purpose of this paper is to show failure modes of high strength reinforced concrete columns.

  • PDF

Studies on Improvement of Ductility of Flexural Members (휨재의 인성개선에 관한 연구)

  • 정일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.125-132
    • /
    • 1993
  • 콘크리트의 인성개선을 위하여 횡보강근을 사용할 수 있으나 보통강도으 철근ㅇ르 사용하였을 경우에는 조속한 철근의 강상으로 인한 콘크리트으 인성개선효과가 급격히 떨어지기 때문에 고강도 횡보강도에 의한 압축인성 개선효과를 이론 및 실험으로 고찰하였다. 실험결과 각 공시체의 변형능력을 비교해 보면 보통강도근의 경우 콘크리트 응력블록계수가 최대일 때 콘크리트의 압축단 변형도가 1%내외인데 비하여 고강도근으로 횡보강하였을 경우가 콘크리트의 압축변형도는 2%로서 충분한 휨압축 인성개선용으로 콘크리트의 충분한 인성개선이 가능하다고 볼 수 있다.

Characteristics of the Flexural and Shear Behavior of RC Beams using Recycled Aggregates (再生骨材를 사용한 철근 콘크리트 보의 휨 및 剪斷擧動 特性)

  • 구봉근;나재웅;신재인;이재범;주봉철
    • Resources Recycling
    • /
    • v.10 no.1
    • /
    • pp.7-15
    • /
    • 2001
  • We can reuse the portion of simple reclamation and the construction by-products. Until now, we have discarded concrete by simply throwing away or dumping in underground. Therefore, we attempted to propose the technical directions for the reuse of waste concrete as the recycled concrete aggregates and concrete structural materials. As a testing result, It is reasonable that standards are substitution of recycled aggregates under 30%, maximum steel ratio, under 70% of balanced steel ratio, under shear span ratio 0.2 for deep beam criteria for safety and Zsutty's equation is reasonable for estimation of factored shear strength

  • PDF