• Title/Summary/Keyword: balance study

Search Result 7,119, Processing Time 0.048 seconds

An Analysis of Proper Curriculum Organization Plan for Elementary and Secondary Invention/Intellectual Property Education (초·중등 발명·지식재산 교육과정의 적정 편성 방안 연구)

  • Lee, Kyu-Nyo;Lee, Byung-Wook
    • 대한공업교육학회지
    • /
    • v.42 no.1
    • /
    • pp.106-124
    • /
    • 2017
  • This study used the secondary Delphi method for experts, in order to propse a proper formation plan for the goal and curriculum of elementary and secondary invention/intellection property education. Its results are as following; First, the key objective of invention/intellectual property education for each school level is evaluated as appropriate. With regard to the key objective, elementary schools are aiming at 'fostering awareness and attitude for invention'(M=4.5), middle schools, 'understanding of invention process and method'(M=4.2), general high schools, 'application and evaluation of invention method'(M=4.1), and specialized high schools, 'understanding and application of Employee Invention'(M=4.6). The objective and goal of education for each school level are also evaluated as appropriate. Second, although the proper formation plans for a key learning element of elementary and secondary invention/intellectual property education were almost identical to an actual formation of preceding literature, overall change is required for the formation balance of each learning element, according to the objective and goal of school-leveled invention/intellectual property education. An appropriate formation shall be focusing on basic learning elements (A, B, C, D, E, and F) for elementary and middle schools(73.2%, 65.1%), lowering somewhat the former elements and increasing expanded learning elements for high schools(51.0%), which are connected to the invention, course(H), and patent application(K). Third, elementary and secondary invention/intellectual property education system should be oriented to its objective and goal. In order to reach this, an appropriate formation plan should be made for each school level, based on the principle of Tyler's learning organization, such as continuity, sequence and integration, which are key learning element. Specialized high schools, in particular, need to be differentiated from general ones, as well as elementary and middle schools. Additionally, for understanding and applying an employee invention, invention/intellectual property education system needs to be established in the phase of secondary occupational education.

Effect of Iron Supplementation on Mineral Utilization in Rats (철 보충이 흰쥐의 무기질 이용에 미치는 영향)

  • Jun, Ye-Sook;Choi, Mi-Kyeong;Kim, Ae-Jung;Kim, Mi-Hyun;Sung, Chung-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.658-663
    • /
    • 2002
  • The purpose of this study was to investigate the effect of iron supplementation on utilizations of various minerals, Ca, Mg, Na, K, Fe, Cu, Zn. Intakes, serum levels, and excretions of these minerals were analyzed and compared in rats fed diet with 100, 200, 400% of iron requirement (Fe, 2Fe, 4Fe groups) for 6 weeks. The feed intake, body weight gain and feed efficiency ratio were not significantly different among the groups. Serum Fe of 2Fe group was significantly lower than other two groups, and serum Zn of 4Fe group was highest. Mineral intakes were not significantly different among three groups. With iron supplementation, urinary excretions of Ca, Fe, Cu, Zn were elevated, but fecal excretions of minerals were not significantly different. And the daily retentions of Na and Fe were significantly elevated, but apparent absorbabilities of minerals were not significantly different. In summary, according to iron supplementation, mineral absorbabilities were not different but urinary excretions of some minerals were increased. Therefore, it could be suggested that adequate iron intake and well-balanced diet are more desirable than nutrient supplementation for mineral balance.

Fermentation Process Characteristics of Phaffia rhodozyma Mutant B76 for Astaxanthin Biosynthesis (Astaxanthin 생합성을 위한 Phaffia rhodoxyma 변이주 B76의 발효공정 특성)

  • 임달택;이은규
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2000
  • Specific carotenoids and astaxanthin biosynthesis power of Phaffia rhodozyma mutant 876, which was obtained after NTG a and UV treatments, was higher than those of the wild type by 40% and 50%, respectively. The mutant strain did not show t the catabolite repression even at 22% (w/v) glucose concentration. The optimum C{N ratio was 2.0, and the optimum t temperature and initial pH were $22^{\circ}C$ and 6.0, respectively. 80th cell growth and astaxanthin formation decreased drastically a as the fermentation temperature was increased over $22^{\circ}C$, whereas they were comparable in the pH range between 5.0 and 7 7.0. Inoculum size did not affect the final cell density nor the carotenoids biosynthesis, and 3%(v/v) was selected as optimal. H Higher dissolved oxygen concentration facilitated astaxanthin biosynthesis, and aeration rate of 1.0 v/0/m and agitation speed of 400 rpm were selected as optimum. The final cell dens때 of 43.3 g/L and the volumetric astaxanthin and carotenoids concentrations of 110.6 mg/L and 149.4 mg/L, respectively, were obtained. The specific carotenoids concentration was 3.45 m mg{g-yeast(dry). Yx/s and Yp/s values of 0.37 and 1.08 were obtained. The result of this study will provide basic information u useful for mass production of astaxanthin from P. rhodozyma fermentation.

  • PDF

The Contribution of Innovation Activity to the Output Growth of Emerging Economies: The Case of Kazakhstan

  • Smagulova, Sholpan;Mukasheva, Saltanat
    • Journal of Distribution Science
    • /
    • v.10 no.7
    • /
    • pp.33-41
    • /
    • 2012
  • The purpose of this study is to analyse the state of the energy industry and to determine the efficiency of its functioning on the basis of energy conservation principle and application of innovative technologies aimed at improving the ecological modernisation of agricultural sectors of Kazakhstan. The research methodology is based on an integrated approach of financial and economic evaluation of the effectiveness of the investment project, based on calculation of elasticity, total costs and profitability, as well as on comparative, graphical and system analysis. The current stage is characterised by widely spread restructuring processes of electric power industry in many countries through introduction of new technical installations of energy facilities and increased government regulation in order to enhance the competitive advantage of electricity market. Electric power industry features a considerable value of creating areas. For example, by providing scientific and technical progress, it crucially affects not only the development but also the territorial organisation of productive forces, first of all the industry. In modern life, more than 90% of electricity and heat is obtained by Kazakhstan's economy by consuming non-renewable energy resources: different types of coal, oil shale, oil, natural gas and peat. Therefore, it is significant to ensure energy security, as the country faces a rapid fall back to mono-gas structure of fuel and energy balance. However, energy resources in Kazakhstan are spread very unevenly. Its main supplies are concentrated in northern and central parts of the republic, and the majority of consumers of electrical power live in the southern and western areas of the country. However, energy plays an important role in the economy of industrial production and to a large extent determines the level of competitive advantage, which is a promising condition for implementation of energy-saving and environmentally friendly technologies. In these circumstances, issues of modernisation and reforms of this sector in Kazakhstan gain more and more importance, which can be seen in the example of economically sustainable solutions of a large local monopoly company, significant savings in capital investment and efficiency of implementation of an investment project. A major disadvantage of development of electricity distribution companies is the prevalence of very high moral and physical amortisation of equipment, reaching almost 70-80%, which significantly increases the operating costs. For example, while an investment of 12 billion tenge was planned in 2009 in this branch, in 2012 it is planned to invest more than 17 billion. Obviously, despite the absolute increase, the rate of investment is still quite low, as the total demand in this area is at least more than 250 billion tenge. In addition, industrial infrastructure, including the objects of Kazakhstan electric power industry, have a tangible adverse impact on the environment. Thus, since there is a large number of various power projects that are sources of electromagnetic radiation, the environment is deteriorated. Hence, there is a need to optimise the efficiency of the organisation and management of production activities of energy companies, to create and implement new technologies, to ensure safe production and provide solutions to various environmental aspects. These are key strategic factors to ensure success of the modern energy sector of Kazakhstan. The contribution of authors in developing the scope of this subject is explained by the fact that there was not enough research in the energy sector, especially in the view of ecological modernisation. This work differs from similar works in Kazakhstan in the way that the proposed method of investment project calculation takes into account the time factor, which compares the current and future value of profit from the implementation of innovative equipment that helps to bring it to actual practise. The feasibility of writing this article lies in the need of forming a public policy in the industrial sector, including optimising the structure of energy disbursing rate, which complies with the terms of future modernised development of the domestic energy sector.

  • PDF

Effects of green manures in organic vegetable production (유기농 채소생산을 위한 녹비작물 도입효과)

  • Lee, Sang-Min;Lee, Y.;Yun, H.B.;Sung, J.K.;Lee, Y.H.;Lee, S.B.;Choi, K.J.;Kim, K.H.
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.77-101
    • /
    • 2009
  • Organic farming in Korea has mainly focused on producing vegetables in plastic film house and cereals in paddy field. For high productivity of vegetables and cereals, most Korean farmers have not applied crop rotation in the cropping system. Thus, this study was carried out to evaluate the effects of crop rotation on the yield of red pepper and green onion, the changes in soil fertility and the potential as green manure of rye and hairy vetch. Rye and hairy vetch were cultivated for winter season every year, and directly incorporated into the soil. The yield of red pepper fruits in organic farming using crop rotation (OFCR) decreased 23 to 36% compared with conventional farming system (CFS). Whereas, green onion showed the increased yield of about 13%. In OFCR, total carbon content of soil was higher, however available phosphate content lower than conventional farming. As a result of measuring the bulk density of soil, OFCR and CFS were 1.26 to $1.35Mg/m^3$ and 1.37 to $1.42Mg/m^3$, respectively. Carbon and nitrogen contents of microbial biomass in OFCR were obviously higher compared with the CFS. In the plot cultivated rye for winter season, the weed germination was strongly reduced (about 52 %). Balance of macro nutrient elements, nitrogen and phosphate, in the application of rye and hairy vetch had a minus value. For potassium, the output value was higher than the input one, therefore organic farming under red pepper-rye or hairy vetch systems requires applying additional potassium input. Also, we selected two hairy vetch varieties of cv. Hungvillosa and Ostsaat which can be adapt at Korea climate. In order to estimate a yield of green manures, the weight of shoot and root was measured. The ratio of shoot and root between rye and hairy vetch showed 0.88 and 1.91, respectively. The potential levels of nitrogen, phosphate and potassium which could be supplied from rye were 7.7, 7.8 and 21.9 kg/10a and from hairy vetch were 17.0, 8.6 and 22.9 kg/10a, respectively. So we recommend that cultivating hairy vetch, as a nutrient supplier, and rye, as an amendment to enhance the soil physical property, for winter season be practical method in Korea organic farming system.

  • PDF

Relationships of the Slaughter Weight to Growth Performance and Meat Quality Traits in Finishing Pigs Fed A Low-energy Diet (저에너지 사료로 비육된 돼지에서 도살체중과 성장성적 및 육질과의 관계)

  • Park, Man-Jong;Jeong, Jin-Yeun;Ha, Duck-Min;Park, Jae-Wan;Sim, Tae-Geon;Yang, Han-Sul;Lee, Chul-Young;Joo, Seon-Tea;Park, Byung-Chul
    • Journal of Animal Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • The present study was undertaken to investigate the effects of slaughter weight (SW) of finishing pigs fed a low-energy diet on growth efficiency and carcass quality and thereby to assess the optimal SW. (Yorkshire $\times$ Landrace) $\times$ Duroc-crossbred gilts and barrows were fed a diet containing 3,060 kcal DE/kg from 80-kg BW and slaughtered at 110, 125, or 135 kg, after which the belly, the most preferred cut in Korea, as well as the least preferred cuts ham and loin were subjected to physicochemical and sensory analyses. Both ADG and ADFI were greater (P<0.05) in the group slaughtered at 125 or 135 kg than in the 110-kg-SW group, whereas the opposite was true for gain:feed (P<0.01). Backfat thickness (BFT), which increased with increasing SW (P<0.01 and P<0.05), was greater in barrows than in gilts (P<0.01); BFT of barrows at 125 kg (24.6 mm) was comparable to that of gilts at 135 kg (24.2 mm). Physicochemical characteristics of the belly, ham and loin were minimally affected, if not affected, by SW; of note, however, the redness of the ham increased between 110- and 125-kg SW (P<0.05). In sensory evaluation of the belly, the fat:lean balance, which is a most important quality trait in this cut, was best (P<0.05) at 125 kg of SW, but the overall acceptability of this cut was not changed by SW. In the ham and loin, the marbling score increased (P<0.01) between 110- and 125-kg SW, whereas color, aroma, off-flavor, and drip were unaffected by SW. In addition, the acceptability of the loin increased (P<0.05) between 110- and 125-kg SW. In cooked meats, none of color, aroma, off-flavor, juiciness, tenderness, taste, and acceptability was changed by SW, except for an increase (P<0.05) in darkness of loin color between 110- and 125-kg SW. In conclusion, the optimal SW for the present subpopulation on the present low-energy diet lie in between 125 and 135 kg for gilts and at 125 kg for barrows.

Development of NQ-A, Nutrition Quotient for Korean Adolescents, to assess dietary quality and food behavior (청소년을 위한 영양지수 개발과 타당도 검증)

  • Kim, Hye-Young;Lee, Jung-Sug;Hwang, Ji-Yun;Kwon, Sehyug;Chung, Hae Rang;Kwak, Tong-Kyung;Kang, Myung-Hee;Choi, Young-Sun
    • Journal of Nutrition and Health
    • /
    • v.50 no.2
    • /
    • pp.142-157
    • /
    • 2017
  • Purpose: The purpose of this study was to develop a nutrition quotient for adolescents (NQ-A) to assess overall dietary quality and food behavior of Korean adolescents. Methods: Development of the NQ-A was undertaken in three steps: item generation, item reduction, and validation. Candidate items of the NQ-A checklist were selected based on literature reviews, results of the fifth Korea National Health and Nutrition Examination Survey data, dietary guidelines for Korean adolescents, expert in-depth interviews, and national nutrition policies and recommendations. A total of 213 middle and high school students participated in a one-day dietary record survey and responded to 41 items in the food behavior checklist. Pearson's correlation coefficients between the responses to the checklist items along with nutritional status of the adolescents were calculated. Item reduction was performed, and 24 items were selected for the nation-wide survey. A total of 1,547 adolescents from 17 cities completed the checklist questionnaire. Exploratory factor and confirmatory factor analyses were performed to develop a final NQ-A model. Results: Nineteen items were finalized as the checklist items for the NQ-A. Checklist items were composed of five factors (balance, diversity, moderation, environment, and practice). The five-factor structure accounted for 47.2% of the total variance. Standardized path coefficients were used as weights of the items. The NQ-A and five-factor scores were calculated based on the obtained weights of the questionnaire items. Conclusion: Nutrition Quotient for adolescents (NQ-A) would be a useful instrument for evaluating dietary quality and food behavior of Korean adolescents. Further research on NQ-A is needed to reflect changes in adolescent's food behavior and environment.

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.