• Title/Summary/Keyword: bainitic steels

Search Result 49, Processing Time 0.025 seconds

Manufacturing Technologies and Applications of Steel Strip Products (철강 압연제품의 제조기술 및 응용)

  • 권오준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.10-21
    • /
    • 1999
  • Recent progress in manufacture of hot and cold rolled steel strip products and their applications were reviewed. The main trend in the technological development has been to meet the customers' requests for quality improvement and cost reduction. The weight reduction to reduce the fuel consumption is the main issue in the automotive industry and, therefore, various steels have been developed to improve formability as well as strength. The steels include super-EDDQ steels, bainitic steels, TRIP steels, etc. In the oil industry, efforts have been focused to improve strength together with either low temperature toughness or HIC/SSCC resistance. The packaging industry is also a highly competitive market, and steel and canmaking companies have worked cooperatively to develop cost-effective canmaking processes as well as high performance steels. This type of cooperation has also been found important in other industries such as the appliance and electronic industries for the benefits of both steelmakers and customers.

  • PDF

Effect of Prior Microstructures on the Behavior of Cementite and Mechanical Properties in Low Carbon Steels (저탄소강의 초기 미세조직에 따른 기계적 성질과 시멘타이트거동)

  • Lee, Jong-Chul;Kang, Ui-Gu;Lee, Jung-Won;Oh, Chang-Seok;Kim, Sung-Joon;Nam, Won-Jong
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.471-475
    • /
    • 2009
  • The effect of prior microstructures on mechanical properties in low carbon steels were examined by comparing the behavior of cementite and mechanical properties of cryo-rolled and subsequently annealed steels. Prior microstructures consisted of ferrite + pearlite, banite or martensite. Steels, consisting of bainitic microstructure, exhibited the better combination of strength - ductility than steels with other prior microstructures, such as ferrite + pearlite and martensite.

Effects of V on the Formation of Ti-Nb-V Cabonitrides and Mechanical Properties in Low Carbon HSLA Steels (저탄소.저합금강의 Ti-Nb-V 복합 탄질화물 형성 및 기계적 특성에 미치는 V 첨가의 효과)

  • Kang, J.S.;Kim, D.J.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.581-585
    • /
    • 2006
  • Effects of V on both the formation of Ti-Nb-V carbonitrides and mechanical properties of Ti-Nb bearing low carbon HSLA steels were investigated. Hot rolling process was simulated by using Gleeble 3500 system with the steels containing three different levels of V ($0{\sim}0.1wt.%$). Vanadium precipitated as Ti-Nb-V carbonitrides at austenite region but it did not precipitate as VC during austenite to acicular ferrite or bainitic ferrite phase transformation. As V content increased, the amount of Nb precipitates was decreased but the average size of Ti-Nb-V carbonitrides was increased due to larger diffusivity of V than that of Nb. Coarsened Ti-Nb-V carbonitrides could act as heterogeneous nucleation site during ${\gamma}{\rightarrow}{\alpha}$ phase transformation, thus, acicular ferrite transformation was promoted as V content increased, resulting in increase of upper shelf energy.

Effect of Carbon Equivalent and Cooling Rate on Microstructure in A516 Steels for Pressure Vessel (압력용기용 A516 강의 미세조직에 미치는 탄소 당량과 냉각 속도의 영향)

  • Lee, Hyun Wook;Kang, Ui Gu;Kim, Min Soo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.511-518
    • /
    • 2019
  • In this study, the effect of carbon equivalent and cooling rate on microstructure and hardness of A516 steels for pressure vessel is investigated. Six kinds of specimens are fabricated by varying carbon equivalent and cooling rate, and their microstructures and hardness levels are analyzed. Specimens with low carbon equivalent consist of ferrite and pearlite. As the cooling rate increases, the size of pearlite decreases slightly. The specimens with high carbon equivalent and rapid cooling rates of 10 and $20^{\circ}C/s$ consist of not only ferrite and pearlite but also bainite structure, such as granular bainite, acicular ferrite, and bainite ferrite. As the cooling rate increases, the volume fractions of bainite structure increase and the effective grain size decreases. The effective grain sizes of granular bainite, acicular ferrite, and bainitic ferrite are ~20, ~5, and ${\sim}10{{\mu}m$, respectively. In the specimens with bainite structure, the volume fractions of acicular ferrite and bainitic ferrite, with small effective grains, increase as cooling rate increases, and so the hardness increases significantly.

Effects of Cu and B on Effective Grain Size and Low-Temperature Toughness of Thermo-Mechanically Processed High-Strength Bainitic Steels (TMCP로 제조된 고강도 베이나이트강의 유효결정립도와 저온인성에 미치는 Cu와 B의 영향)

  • Lee, Seung-Yong;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.520-525
    • /
    • 2014
  • Effects of Cu and B on effective grain size and low-temperature toughness of thermo-mechanically processed high-strength bainitic steels were investigated in this study. The microstructure of the steel specimens was analyzed using optical, scanning, and transmission electron microscopy; their effective grain size was also characterized by electron back-scattered diffraction. To evaluate the strength and low-temperature toughness, tensile and Charpy impact tests were carried out. The specimens were composed of various low-temperature transformation products such as granular bainite (GB), degenerated upper bainite (DUB), lower bainite (LB), and lath marteniste (LM), dependent on the addition of Cu and B. The addition of Cu slightly increased the yield and tensile strength, but substantially deteriorated the low-temperature toughness because of the higher volume fraction of DUB with a large effective grain size. The specimen containing both Cu and B had the highest strength, but showed worse low-temperature toughness of higher ductile-brittle transition temperature (DBTT) and lower absorbed energy because it mostly consisted of LB and LM. In the B-added specimen, on the other hand, it was possible to obtain the best combination of high strength and good low-temperature toughness by decreasing the overall effective grain size via the appropriate formation of different low-temperature transformation products containing GB, DUB, and LB/LM.

Effect of Rolling Conditions on Microstructure and Mechanical Properties of Thick Steel Plates for Offshore Platforms (해양플랜트용 후판강의 미세조직과 기계적 특성에 미치는 압연 조건의 영향)

  • Kim, Jongchul;Suh, Yonhchan;Hwang, Sungdoo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.478-488
    • /
    • 2018
  • In this study, three kinds of steels are manufactured by varying the rolling conditions, and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone(HAZ) specimens are fabricated through the simulation of the welding process, and the HAZ microstructure is analyzed. The Charpy impact test of the HAZ specimens is performed at $-40^{\circ}C$ to investigate the low temperature HAZ toughness. The main microstructures of steels are quasi-polygonal ferrite and pearlite with fine grains. Because coarse granular bainite forms with an increasing finish rolling temperature, the strength decreases and elongation increases. In the steel with the lowest reduction ratio, coarse granular bainite forms. In the HAZ specimens, fine acicular ferrites are the main features of the microstructure. The volume fraction of coarse bainitic ferrite and granular bainite increases with an increasing finish rolling temperature. The Charpy impact energy at $-40^{\circ}C$ decreases with an increasing volume fraction of bainitic ferrite and granular bainite. In the HAZ specimen with the lowest reduction ratio, coarse bainitic ferrite and granular bainite forms and the Charpy impact energy at $-40^{\circ}C$ is the lowest.

Microstructures and Tensile Properties by Multi-step Isothermal Heat Treatment in Conventional TRIP Steel (상용 TRIP강의 다단 항온 변태 열처리에 따른 미세조직 및 인장 특성)

  • Kim, Kyeong-Won;Lee, Chang-Hoon;Kang, Jun-Yun;Lee, Tae-Ho;Cho, Kyung-Mox
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.103-108
    • /
    • 2016
  • In recent years, TRIP steels which are composed of ferrite, bainite, and retained austenite have drawn much attention for automotive sheets due to excellent combination of strength and ductility. The effect of two-step isothermal heat treatment of bainitic transformation on microstructures, especially retained austenites and tensile properties in the conventional TRIP steel was investigated. A two-step isothermal heat treatment, in which 50% bainitic transformation occurred at high temperature, followed by bainitic transformation at low temperature, improves tensile properties, resulting from enhanced mechanical stability of retained austenite against external plastic deformation due to refinement of retained austenites, compared to single-step isothermal heat treatment.

Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability (높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

Effect of Strain Aging on Tensile Behavior and Properties of API X60, X70, and X80 Pipeline Steels

  • Lee, Sang-In;Lee, Seung-Yong;Lee, Seok Gyu;Jung, Hwan Gyo;Hwang, Byoungchul
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1221-1231
    • /
    • 2018
  • The effect of strain aging on tensile behavior and properties of API X60, X70, and X80 pipeline steels was investigated in this study. The API X60, X70, and X80 pipeline steels were fabricated by varying alloying elements and thermomechanical processing conditions. Although all the steels exhibited complex microstructure consisting of polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, they had different fractions of microstructures depending on the alloying elements and thermomechanical processing conditions. The tensile test results revealed that yielding behavior steadily changed from continuous-type to discontinuous-type as aging temperature increases after 1% pre-strain. After pre-strain and thermal aging treatment in all the steels, the yield and tensile strengths, and yield ratio were increased, while the uniform elongation and work hardening exponent were decreased. In the case of the X80 steel, particularly, the decrease in uniform elongation was relatively small due to many mobile dislocations in PF, and the increase in yield ratio was the lowest because a large amount of harder microstructures such as GB, BF, and coarse secondary phases effectively enhanced work hardening.

Microstructural Characterization in Partially Austenitized and Isothermally Transformed 1.0C-1.5Cr Bearing Steels (부분 오스테나이트화 후 항온 변태한 1.0C-1.5Cr 베어링강의 미세조직 특성)

  • Yoon, Dong-Joo;Choi, Byung-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 1996
  • Metallographic observation was carried out by scanning and transmission electron microscopy to evaluate microstructural characteristics of partially austenitized and isothermally transformed 1.0C-1.5Cr bearing steel. It was observed that lower bainite formed in the local region of specimen partially austenitized and isothermally held at $250^{\circ}C$ for 1/3 hr and formed in almost all area of the specimen isothermally held at $250^{\circ}C$ for 2 hrs. Lower bainitic carbides with midrib was also observed in the specimen partially austenitized and isothermally held at $250^{\circ}C$ for 4 hrs. Midrib was nearly carbide-free region and thicker in the vicinity of spherical carbides than the other region. Lengthening speed of lower bainitic carbides was remarkabey increased at isothermal holding time ranging from 2 hrs to 4 hrs.

  • PDF