• Title/Summary/Keyword: baculovirus expression

Search Result 169, Processing Time 0.025 seconds

Construction of Modified Bacillus thuringiensis cry1Ac Genes for Transgenic Crop Through Multi Site-directed Mutagenesis

  • Xu, Hong Guang;Roh, Jong-Yul;Wang, Yong;Choi, Jae-Young;Shim, Hee-Jin;Liu, Qin;Tao, Xueying;Woo, Soo-Dong;Jin, Byung-Rae;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.199-204
    • /
    • 2009
  • The newly cloned Bacillus thuringiensis cry1-5 gene showed high activity to both Plutella xylostella and Spodoptera exigua, while cry1Ac only showed high activity against P. xylostella but low to S. exigua. Through the alignment of amino acid sequences between Cry1Ac and Cry1-5, we found 12 different residues in domain I (6 residues) and domain II (6 residues). In this study, the modified cry1Ac gene, which is constructed according to a crop-preferring codon usage, was used as a template to construct mutant B. thuringiensis cry1Ac genes based on cry1-5 gene through multi site-directed mutagenesis. Total 63 various mutant cry genes were obtained at 12 positions randomly. Among them, ten mutant cry genes, whose domain I was totally converted and domain II was randomly, were selected to express in baculovirus expression system as a polyhedrin fusion form. The recombinant proteins were 95 kDa in size and were stably activated as 65 kDa by trypsin. The expressed mutant Cry proteins were applied to bioassays against P. xylostella and S. exigua. All mutants showed high insecticidal activity both to P. xylostella and S. exigua similar to cry1-5. These results suggest that these mutant cry genes might be expected of desirable cry genes for introduction to transgenic crops.

Identification and Molecular Characterization of Novel cry1-Type Toxin Genes from Bacillus thuringiensis K1 Isolated in Korea

  • Li Ming Shun;Choi Jae-Young;Roh Jong-Yul;Shim Hee-Jin;Kang Joong-Nam;Kim Yang-Su;Wang Yong;Yu Zi Niu;Jin Byung-Rae;Je Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • To clone novel cry1-type genes from the Bacillus thuringiensis K1 isolate, about 2.4-kb-long PCR fragments were amplified with two primer sets of ATG1-F/N400-R and 1BeATG1-F/N400-R. Using PCR-RFLP, three novel cry1-type genes, cry1-1, cry1-7, and cry1-44, were obtained from B. thuringiensis K1 and the complete coding sequences of these novel genes were analyzed. The Cry1-1, Cry1-7, and Cry1-44 proteins showed maximum similarities of about 78.0%, 99.7%, and 91.0% with the Cry1Ha1, Cry1Be1, and Cry1Ac2 proteins, respectively. These novel cry1-type genes were expressed using a baculovirus expression vector system and their insecticidal activities were investigated. Whereas all three novel genes were toxic to Plutella xylostella larvae, only Cry1-1 showed insecticidal activity against Spodoptera exigua larvae.

Sequencing and Baculovirus-Based Expression of the Glycoprotein B2 Gene of HSV-2 (G)

  • Uh, Hong-Sun;Park, Jong-Kuk;Kang, Hyun;Kim, Soo-Young;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.482-490
    • /
    • 2001
  • The gene for glycoprotein B (gB2) of HSV-2-strain G was subcloned, sequenced, recombinated into the lacZ-HcNPV, expressed in insect cells, and compared with the homologous gene of other HSV-2 strains. The ORF of the gB2 gene was 2,715 bp. The overall nucleotide sequence homology of te gB2 gene compared ith that of the two previously reported HSV-2 strains appeared to be over 98%. A recombinant virus named Baculo-gB2 protein in insect cells. The recombination was confirmed by a PCR and the expression was demonstrated by radio immunoprecipitation. Insect cells infected with the Baculo-gB2 virus synthesized and processed gB2 with approximately 120 kDa in the cells, and then secreted it into the culture media, where it reacted with a nomoclonal antibody to gB2. The gB2 polypeptide contained two main hydrophobic regions (a signal sequence from 1 to 23 amino acid residues, and a membrane anchor sequence from aa 745 to 798), eight N-glycosylation sites evenly distributed, and was rich in alanine (11.2%). Antibodies to this recombinant protein that were raised in mice recognized the viral gB2 and neutralized the infectivity of the HSV-2 in vitro. There results show that the gB2 protein was successfully porduced in insect cells and could be used to raise a protective neutralizing antibody. Accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Bombyx mori Nucleopolyhedrovirus Bacmid Enabling Rapid Generation of Recombinant Virus by In Vitro Transposition

  • Tao, Xue Ying;Choi, Jae Young;Kim, Yang-Su;Lee, Seok Hee;An, Saes Byeol;Pang, Ying;Kim, Jong Hoon;Kim, Woo Jin;Je, Yeon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.386-392
    • /
    • 2015
  • A novel recombinant bacmid, bEasyBm, that enables the easy and fast generation of pure recombinant baculovirus without any purification step was constructed. In bEasyBm, attR recombination sites were introduced to facilitate the generation of a recombinant viral genome by in vitro transposition. Moreover, the extracellular RNase gene from Bacillus amyloliquefaciens, barnase, was expressed under the control of the Cotesia plutellae bracovirus early promoter to negatively select against the nonrecombinant background. The bEasyBm bacmid could only replicate in host insect cells when the barnase gene was replaced with the gene of interest by in vitro transposition. When bEasyBm was transposed with pDualBac-EGFP, the resulting recombinant virus, EasyBm-EGFP, showed high levels of EGFP expression efficiency compared with that of non-purified recombinant virus BmGOZA-EGFP, which was constructed using the bBmGOZA system. In addition, nonrecombinant backgrounds were not detected in unpurified EasyBm-EGFP stocks. Based on these results, a high-throughput system for the generation of multiple recombinant viruses at a time was established.

Expression and Characterization of Human N-Acetylglucosaminyltransferases and ${\alpha}$2,3-Sialyltransferase in Insect Cells for In Vitro Glycosylation of Recombinant Erythropoietin

  • Kim, Na-Young;Kim, Hyung-Gu;Kim, Yang-Hyun;Chung, In-Sik;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.383-391
    • /
    • 2008
  • The glycans linked to the insect cell-derived glycoproteins are known to differ from those expressed in mammalian cells, partly because of the low level or lack of glycosyltransferase activities. GnT II, GnT IV, GnT V, and ST3Gal IV, which play important roles in the synthesis of tetraantennarytype complex glycan structures in mammalian cells, were overexpressed in Trichoplusia ni cells by using a baculovirus expression vector. The glycosyltransferases, expressed as a fusion form with the IgG-binding domain, were secreted into the culture media and purified using IgG sepharose resin. The enzyme assay, performed using a pyridylaminated-sugar chain as an acceptor, indicated that the purified glycosyltransferases retained their enzyme activities. Human erythropoietin expressed in T. ni cells (rhEPO) was subjected to in vitro glycosylation by using recombinant glycosyltransferases and was converted into complex-type glycan with terminal sialic acid. The presence of Nacetylglucosamine, galactose, and sialic acid on the rhEPO moiety was detected by a lectin blot analysis, and the addition of galactose and sialic acid to rhEPO was confirmed by autoradiography using $UDP-^{14}C-Gal\;and\;CMP-^{14}C-Sia$ as donors. The in vitro glycosylated rhEPO was injected into mice, and the number of reticulocytes among the ed blood cells was counted using FACS. A significant increase in the number of reticulocytes was not observed in the mice injected with in vitro glycosylated rhEPO as compared with those injected with rhEPO.

Molecular Cloning and Characterization of Lysozyme II from Artogeia rapae and its Expression in Baculovirus-infected Insect Cells

  • Bang, In-Seok;Kang, Chang-Soo
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.175-182
    • /
    • 2007
  • The lysozyme II gene of cabbage butterfly Artogeia rapae was cloned from fat body of the larvae injected with E. coli and its nucleotide sequence was determined by the RACE-PCR. It has an open reading frame of 414 bp nucleotides corresponding to 138 amino acids including a signal sequence of 18 amino acids. The estimated molecular weight and the isoelectric point of the lysozyme II without the signal peptide were 13,649.38 Da and 9.11, respectively. The A. rapae lysozyme II (ARL II) showed the highest identity (81%) in the amino acid sequence to Manduca sexta lysozyme among other lepidopteran species. The two catalytic residues ($Glu^{32}$ and $Asp^{50}$) and the eight Cys residue motifs, which are highly conserved among other c-type lysozymes in invertebrates and vertebrates, are also completely conserved. A phylogenetic analysis based on amino acid sequences indicated that the ARL II was more closely related to M. sexta, Hyphantria cunea, Heliothis virescens, and Trichoplusia ni lysozymes. The ARL II gene was expressed in Spodoptera frugiperda 21 insect cells and the recombinant ARL II (rARL II) was purified from cell-conditioned media by cation exchange column chromatography and reverse phase FPLC. The purified rARL II was able to form a clear zone in lysoplate assay against Micrococcus luteus. The lytic activity was estimated to be 511.41 U/mg, 1.53 times higher than that of the chicken lysozyme. The optimum temperature for the lytic activity of the rARL II was $50^{\circ}C$, the temperature dependency of the absolute lytic activity of rARL II was higher than that of the chicken lysozyme at low temperatures under $65^{\circ}C$.

High Level Production of Glycoprotein H of HSV-1 (F) Using HcNPV Vector System

  • Kang, Hyun;Cha, Soung-Chul;Han, You-Jin;Park, In-Ho;Lee, Min-Jung;Byun, Si-Myung;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.483-492
    • /
    • 2000
  • The Herpes simplex virus type 1 (HSV-1) strain F glycoprotein H (gH) gene in the pHLB-4 plasmid was recombinated into a baculovirus expression vector (lacZ-HcNPV) to construct a recombinant virus GH-HcNPV expressing gH. The sequences of gH and its expression were analyzed. The gH gene was located in the 6.41 kb BglII fragment. The open reading frame (ORF) of the gH gene was 2,517 bp and codes 838 amino acid residues. Insect cells infected with this recombinant virus synthesized a high level of the matured and gX-gH fusion protein with approximately 112 kDa. The fusion gH protein was localized on the membrane of the insect cells as seen by using immunofluorescence assay and accumulated in the cultured media by the SDS-PAGE and immunoprecipitation assays. The amino acid sequence presents additional characteristics compatible with the structure of a viral glycoprotein: signal peptide, putative glycosylation sites and a long C-terminal transmembrane sequence. Antibodies raised in mice to this recombinant protein recognized viral gH and neutralized the infectivity of HSV-1 in vitro. These results demonstrate that it is possible to produce a mature protein by gene transfer in eukaryotic cells, and indicate the utility of the HcNPV-insect cell system for producing and characterizing eukaryotic proteins. Furthermore, the neutralizing antibodies would appear to protect mice against HSV; accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Effect of D-Fructose on Sugar Transport Systems in Trichoplusia ni Cells and Photolabeling of the Trichoplusia ni Cell-Expressed Human HepG2 Type Glucose Transport Protein (Trichoplusia ni 세포에 내재하는 당 수송체에 D-fructose가 미치는 효과와 Trichoplusia ni 세포에 발현된 사람 HepG2형 포도당 수송 단백질의 photolabelling)

  • Lee, Chong-Kee
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2014
  • Trichoplusia ni cells are used as a host permissive cell line in the baculovirus expression system, which is useful for large-scale production of human sugar transport proteins. However, the activity of endogenous sugar transport systems in insect cells is extremely high. Therefore, the transport activity resulting from the expression of exogenous transporters is difficult to detect. Furthermore, very little is known about the nature of endogenous insect transporters. To exploit the expression system further, the effect of D-fructose on 2-deoxy-D-glucose (2dGlc) transport by T. ni cells was investigated, and T. ni cell-expressed human transporters were photolabeled with [$^3H$] cytochalasin B to develop a convenient method for measuring the biological activity of insect cell-expressed transporters. The uptake of 1 mM 2dGlc by uninfected- and recombinant AcMPV-GTL infected cells was examined in the presence and absence of 300 mM of D-fructose, with and without $20{\mu}M$ of cytochalasin B. The sugar uptake in the uninfected cells was strongly inhibited by fructose but only poorly inhibited by cytochalasin B. Interestingly, the AcMPV-GTL-infected cells showed an essentially identical pattern of transport inhibition, and the rate of 2dGlc uptake was somewhat less than that seen in the non-infected cells. In addition, a sharply labeled peak was produced only in the AcMPV-GTL-infected membranes labeled with [$^3H$] cytochalasin B in the presence of L-glucose. No peak of labeling was seen in the membranes prepared from the uninfected cells. Furthermore, photolabeling of the expressed protein was completely inhibited by the presence of D-glucose, demonstrating the stereoselectivity of labeling.

Nucleotide sequence analysis and expression of NSP4 gene of human rotaviruses isolated in Korea (국내에서 분리된 사람 로타바이러스의 NSP4 유전자 염기서열 분석 및 발현)

  • Jung, Dong-hyuk;Song, Yun-kyung;Kim, Kyung-mi;Park, Hyo-sun;Back, Myoung-soon;Kang, Shien-young
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.89-100
    • /
    • 2002
  • The nonstructural glycoprotein NSP4, encoded by the 10th gene of rotavirus, has been known to play important roles in viral assembly and pathogenesis. The NSP4 genes of human rotavirus Korean isolates, designated as CBNU/HR-1, CBNU/HR-2, CBNU/HR-3, and CBNU/HR-4, were cloned, sequenced and characterized. Also, the NSP4 gene of the CBNU/HR-1 was expressed in a baculovirus-insect cell system. The sequence data indicated that the NSP4 genes of human rotavirus Korean isolates were 750 or 751 bases in length and encoded one open reading frame of 175 amino acids. Two glycosylation sites were recognized in the NSP4 gene of human rotavirus isolates tested. The NSP4 of CBNU/HR-1, CBNU/HR-3, and CBNU/HR-4 exhibited a high degree of amino acid sequence homology with that of NSP4 genotype B viruses, but a low degree of amino acid sequence homology with that of NSP4 genotype A viruses. However, the NSP4 of CBNU/HR-2 exhibited a high degree of amino acid sequence homology with that of NSP4 genotype A viruses, but a low degree of amino acid sequence homology with that of NSP4 genotype B viruses. The Sf9 cells infected with recombinant baculovirus, inserted with NSP4 gene of CBNU/HR-1, produced specific cytopathic effects and the expressed NSP4 was detected by immunofluorescence staining using NSP4-specific monoclonal antibody(MAb). The expressed NSP4 migrated at 16-26 kDa on SDS-PAGE and reacted with NSP4-specific MAb by Western blotting.

Enhanced Resistance to Botrytis cinerea Mediated by Transgenic Expression of the Spider Chitinase Gene AvChit in Arabidopsis

  • Hur, Yeon-Jae;Kim, Doh-Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.2
    • /
    • pp.259-264
    • /
    • 2009
  • The AvChit gene encodes for a chitinase from the spider, Araneus ventricosus. This spider, A. ventricosus, is an abundant species in Korea. Arabidopsis thaliana plants were transformed with the AvChit gene using Agrobacterium tumefaciens. Thirteen transgenic lines expressing the AvChit gene were obtained. Functional expression of the AvChit gene in transgenic Arabidopsis was confirmed by Southern, northern and western blot analysis. The AvChit cDNA was expressed as a 61 kDa polypeptide in baculovirus-infected insect Sf9 cells. AvChit protein extracted from transgenic Arabidopsis exhibited high levels of chitinase activity. Phytopathological tests showed that two transgenic Arabidopsis lines expressing the AvChit gene displayed high levels of resistance to gray mold disease (Botrytis cinerea).