• Title/Summary/Keyword: bacterial volatile

Search Result 193, Processing Time 0.028 seconds

Development and Characterizations of Environment-friendly Lime Paint (친환경성 석회 도료의 개발 및 특성 연구)

  • Hwang, Dae-Ju;Kim, Ho-Sung;Lee, Seung-Kwan;Choi, Moon-Kwan;Kim, Hwan;Lee, Jong-Dae
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Lime paint surpassing others in execution efficiency, anti-bacterial, anti-mold and small quantity emission of VOCs(Volatile Organic Compounds) characteristics was developed using a limestone as raw materials. The lime paint prepared by mixing slaked lime($37{\sim}40\;wt%$), PVA:EVA(9 wt%:1 wt%), talc(23 wt%), $TiO_2$(14 wt%), zeolite (3 wt%), antifoaming agent(5 wt%), wetting agent (5 wt%) was indicated over 99.8% of anti-bacterial and anti-mold characteristics. Also, the environment-friendly function of the lime paint was confirmed by detection of small amount of TVOCs($0.01\;mg/m^2h$) and formaldehyde($0.008\;mg/m^2h$). Execution efficiency, economy-and environment-friendly characteristics of this lime paint can make up for defects of established paints. And, it also presents the advantage of a limestone as high value added materials.

Utilization of Ruminal Epithelial Cells by Ruminococcus albus, with or without Rumen Protozoa, and Its Effect on Bacterial Growth

  • Goto, M.;Karita, S.;Yahaya, M.S.;Kim, W.;Nakayama, E.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Effects of supplementation with ruminal epithelial cells on fiber-degrading activity and cell growth of Ruminococcus albus (R. albus, strain 7) was tested using a basal substrate of rice straw and formulated concentrate. Cultures of R. albus alone and R. albus with rumen protozoa were grown at $39^{\circ}C$ for 48 h with an 8.4% crude protein (CP) substrate, 33% of the CP supplemented with either ruminal epithelial cells or defatted soybean meal. The ruminal epithelial cells had lower amounts of rumen soluble and degradable protein fractions as compared to defatted soybean meal, as determined by an enzymatic method, and the same was found with amino acid composition of protein hydrolysates. Ruminal epithelial cells were directly utilized by the R. albus, and resulted in greater growth of cell-wall free bacteria compared to defatted soybean meal. The effect of epithelial cells on bacterial growth was enhanced by the presence of rumen protozoa. In consistency with cultures of R. albus and R. albus with rumen protozoa, fermentative parameters such as dry matter degradability and total volatile fatty acid did not differ between supplementation with ruminal epithelial cells or defatted soybean meal.

Characterization of the Bacterial Community in a Biocover for the Removal of Methane, Benzene and Toluene (메탄, 벤젠 및 톨루엔 제거용 바이오커버의 세균 군집 특성)

  • Ryu, Hee-Wook;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.76-81
    • /
    • 2012
  • Removal of methane, benzene and toluene was evaluated in a lab-scale biocover packed with a soil mixture of forest soil and earthworm cast (75:25 weight ratio). The bacterial community in the biocover was characterized using quantitative real-time PCR and terminal restriction fragment length polymorphism. Methane was removed at the upper layer of the biocover (-0.1 ~ -0.4 m), where the oxygen concentration was remarkably lower. The average removal efficiencies for methane and benzene/toluene were 90% and 99%, respectively. The pmoA gene copy numbers, responsible for methane oxidation, in the upper layer were higher than those in the lower layer. While type I methanotrohs dominated the lower layer, type II methanotrophs, such as Methylocystis and Methylosinus, were noted to be predominant in the upper layer. Benzene and toluene were removed from the lower layer (-0.6 ~ -0.9 m) as well as the upper layer. Moreover, the tmoA gene copy number, responsible for benzene/toluene oxidation, seen in the upper layer was not significantly different from those seen in the lower layer. These results suggest that a biocover packed with a soil and earthworm cast mixture is a promising method which could be utilized for the control of methane and volatile organic compounds such as benzene and toluene.

Fermentation of Environmental Friend Total Mixed Ration and Alteration of Rumen Fermentation Characteristics (환경친화적 섬유질 배합사료의 발효와 반추위 발효특성 변화)

  • Ryu, Chae-Hwa;Park, Myung-Sun;Park, Chul;Choi, Nag-Jin;Cho, Sang-Buem
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.461-473
    • /
    • 2017
  • Total mixed ration (TMR) including concentrate diet and roughage together have been used for the ruminant animal. Relatively high concentrations of moisture and water soluble carbohydrate are representative feature of TMR. Those moisture and water can also provide a niche for bacterial growth. Therefore, a possible fermentation of TMR induced by micro-organism is generally accepted. The present study hypothesized that different lactic acid bacteria could alter fermentation of TMR and subsequently rumen fermentation. Three lactic acid bacteria, Lactobacillus paracasei (A), L. plantarum (B) and L. parabuchneri (C), were employed and 7 treatments under full factorial design were compared with control without inoculation. TMR for dairy cow was used. Significant alterations by treatments were detected at lactic acid and butyric acid contents in TMR (p<0.05). Treatment AC (mixture of A and C) and BC (mixture of B and C) showed great lactate production. Great butyrate production was found at treatment C. At in vitro rumen fermentation, treatments B, C and AB (mixture of A and B) showed significantly great total gas production (p<0.05). All treatments except treatments B and AB, showed less dry matter digestibility, significantly (p<0.05). Total volatile fatty acid production at treatment AC was significantly greater than others (p<0.05). In individual volatile fatty acid production, treatment AB and AC showed great acetate and propionate productions, significantly (p<0.05). This study investigated correlation between organic acid production in TMR and rumen volatile fatty acid production. And it was found that butyric acid in TMR had significant negative correlation with acetate, propionate, total volatile fatty acid, AP ratio and dry matter digestibility.

The Study of Malodor Reduction after Periodontal Treatment (치주질환 치료 후 구취 감소에 대한 연구)

  • Lee, Jae-Myung;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.449-459
    • /
    • 2004
  • Bacterial byproducts and volatile sulfur compounds(VSC) have been found to be the leading intra-oral agents, specifically, the byproducts of gram negative anaerobic bacteria have been implicated as primary factors of halitosis in patients presenting with periodontal disease. The objective of this study was to determine the correlation between periodontal treatment and the subsequent reduction in the level of halitosis. Forty-three subjects presenting with periodontal disease were examined before periodontal treatment, one week after treatment, one month after treatment, and finally, two months after treatment, using a portable sulfide monitoring $Halimeter^{(R)}$ to measure the VSC concentrations at the prescribed intervals. The results of the study were as follows: 1. Significant decreases in the mean VSC concentration were observed at the one week, one month, and two month post-op intervals relative to the pre-op measurement. (p<0.05) 2. Significant decreases in the mean VSC concentration were observed in subjects after completion of flap operations. Significant decreases in the mean VSC concentration were observed at the one and two month post-flap operation measurement relative to the VSC concentration at one week (p<0.05), but no significant differences between the one month and two month VSC concentrations were found. (p<0.05) 3. Significant decreases in the mean VSC concentration were observed in subjects after completion of subgingival curettage (p<0,05). Significant decreases were found between the one week and one month measurements and between the one month and two month measurements, but significant differences were not observed between the one week and two month measurements. (p<0.05) The results of this study show significant decreases in VSC concentration in test subjects after periodontal treatment. It can be inferred from the results above, that periodontal disease is a significant contributing factor of halitosis, and that treatment of periodontal disease can been an effective means of reducing VSC concentration in patients presenting with halitosis concurrent with periodontal disease.

A microbiological Investigation of Barley Drink During Storag (보리차 저장시의 변패 및 변패미생물에 관한 연구)

  • Lee, Min-Jeong;Yoo, Yang-Ja;Kyung, Kyu-Hang
    • Korean journal of food and cookery science
    • /
    • v.6 no.2
    • /
    • pp.51-58
    • /
    • 1990
  • Quality deterioration of barley drink during storage was examined by measuring viable count, titratable acidity (TA), turbidity and pH of barley drinks with or without barley particles stored at temperatures of 20, 25, 30, and 35$^{\circ}C$. Qualitative analysis of organic acids in spoiled barley drink was also performed. TA of barley drink during storage increased to 0.009, 0.0095, 0.0097 and 0.020% at 20, 25, 30 and 35$^{\circ}C$, respectively. TA reached the mixima between 7 and 10 days of storage and reduced from then on. pH values followed the exactly reverse trend of TA. The rate of bacterial spoilage of barley drinks was faster when it was stored at higher temperatures. The numbers of bacteria were in the range between 9.0${\times}10^6-8.0{\times}10^8$ cells/ml depending on the storage temperatures and the different brands. Those samples with higher bacterial growths showed higher optical densities. Volatile organic acids such as acetic, formic, propionic, isobutyric, isovaleric acids were detected in addition to ethyl alcohol. Non-volatile organic acids such as pyruvic, lactic, oxalacetic, succinic, fumaric acids were detected. Among them, acetic acids were most important in their quantities. Five different kinds of spoilage bacteria were isolated and identified as Bacillus Licheniformis, Bacillus coagulans, Badillus cirulans, Bacillus stearothermophilus and Bacillus brevis, all of which were found to form endospores.

  • PDF

BTXS Compounds Biodegradability by Pseudomonas sp. Isolated from a Bioreactor (미생물반응기에서 분리한 Pseudomonas 속 세균의 BTXS Compounds 분해 특성)

  • Cho, Young-Cheol;Jang, Hyun-Sup;Hwang, Sun-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.678-683
    • /
    • 2007
  • We isolated a toluene-degrading bacterium, TDB-4, from a bioreactor which designed to remove volatile organic compounds (VOCs) from the contaminated air. Based on the results of 16S rRNA gene analysis, it was classified as Pseudomonas sp. The toluene degradability was estimated in the variable toluene and bacterial concentrations. The bacterial growth and degradation rate was higher in the samples supplied with 50 ${\mu}mole/vial$ of toluene than with 10 ${\mu}mole/vial$. It was decreased, however, in the samples with 100 ${\mu}mole/vial$, indicating that toluene inhibit the growth or degradation activity of TDB-4 at high concentration. When the degradation ability of other compounds was examined, TDB-4 can degrade other VOCs such as styrene, benzene, and xylene. These results will be helpful to optimize the operating conditions to improve the efficiency of a bioreactor in detoxification of VOCs.

Effects of Zinc on Oral Bacteria and Volatile Sulfur Compound (VSC) in Oral Cavity (구강내 세균과 휘발성 황화합물에 대한 아연의 영향)

  • Kim, Young-Jun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.3
    • /
    • pp.273-281
    • /
    • 2007
  • Zinc compounds have been used in various fields - cosmetics, medicine, and dentistry -because of its effective functions to human tissues or organs. Especially, it is well known that zinc has many biologic effects in oral cavity. Zinc ion can affect various oral microorganisms, resulting in reduction of oral bacteria, dental plaque, and dental caries. Also, zinc ion has an ability to reduce amounts of oral anaerobic bacteria and oral VSC and can reduce oral malodor. The author summarized the characteristics and toxicity of zinc, several forms of zinc compounds applied in human tissues, and reviewed biologic effects of Zinc in oral cavity (anti-bacterial effects, anti-plaque effects, anti-caries effects, and anti-VSC effects of zinc). Because of many advantages of zinc in oral cavity, it can be concluded that application of zinc compound to various oral diseases will be extended and activated, and promising.

Identification, Characterization, and Efficacy Evaluation of Bacillus velezensis for Shot-Hole Disease Biocontrol in Flowering Cherry

  • Han, Viet-Cuong;Yu, Nan Hee;Yoon, Hyeokjun;Ahn, Neung-Ho;Son, Youn Kyoung;Lee, Byoung-Hee;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.115-130
    • /
    • 2022
  • Though information exists regarding the pathogenesis of the shot-hole disease (SH) in flowering cherry (FC), there has been a lack of research focusing on SH management. Therefore, here, we investigated the inhibitory activities of antagonistic bacteria against SH pathogens both in vitro and in vivo as well as their biochemical characteristics and bioactive compounds. Two biosurfactant-producing bacterial antagonists, identified as Bacillus velezensis strains JCK-1618 and JCK-1696, exhibited the best effects against the growth of both bacterial and fungal SH pathogens in vitro through their cell-free culture filtrates (CFCFs). These two strains also strongly inhibited the growth of the pathogens via the action of their antimicrobial diffusible compounds and antimicrobial volatile organic compounds (VOCs). Crude enzymes, solvent extracts, and biosurfactants of the two strains exhibited antimicrobial activities. Liquid chromatography/electrospray ionization time-of-flight mass spectrometric analysis of the partially purified active fractions revealed that the two antagonists produced three cyclic lipopeptides, including iturin A, fengycin A, and surfactin, and a polyketide, oxydifficidin. In a detached leaf assay, pre-treatment and co-treatment of FC leaves with the CFCFs led to a large reduction in the severity of the leaf spots caused by Epicoccum tobaicum and Bukholderia contaminans, respectively. In addition, the two antagonists produced indole-3-acetic acid, siderophore, and a series of hydrolytic enzymes, along with the formation of a substantial biofilm. To our knowledge, this is the first report of the antimicrobial activities of the diffusible compounds and VOCs of B. velezensis against the SH pathogens and their efficiency in the biocontrol of SH.

The effect of palm kernel meal supplementation in the diet on the growth performance and meat quality of swine, and on the level of odorous compounds and bacterial communities in swine manure

  • Hwang, Ok-Hwa;Lee, Yoo-Kyoung;Cho, Sung-Back;Han, Deug-Woo;Lee, Sang-Ryoung;Kwag, Jeong-Hoon;Park, Sung-Kwon
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.5
    • /
    • pp.777-787
    • /
    • 2016
  • In the present study, we aimed to investigate the effect of dietary supplementation of palm kernel meal (PKM), as a fermentable carbohydrate source, on the growth performance, meat quality, concentration of odorous compound, and changes in bacterial community in swine manure. Swine (average initial body weight of $51.36{\pm}1.02kg$) were fed diet which included three levels of PKM (0, 2 and 4%), and their manure samples were collected from the slurry pit. Growth performance and meat quality were not affected by PKM treatments (p > 0.05). Levels of phenols and indoles were decreased in the 2 and 4% PKM treatments compared to 0% PKM (control; p < 0.05). Especially, compared to the control, the 2% PKM group showed decreased levels of phenols by 35% and indoles by 34%. Among the dominant bacterial genera, the main change in relative abundance occurred in those belonging to the Firmicutes phylum in PKM treatments. Terrisporobacter and Clostridium were decreased in the PKM groups compared to the control. However, the relative abundance of Intestinibacter, AM406061_g, Coprococcus_g2, Phascolarcotobacterium, EF401875_g, Lactobacillus, and Streptococcus were increased in the PKM group compared to control. Taken together, administration of PKM had a beneficial effect on reducing production of odorous compounds in swine manure, possibly by modulating the communities of predominantly carbohydrate-utilizing bacteria in the large intestine of swine.