• Title/Summary/Keyword: bacterial volatile

Search Result 191, Processing Time 0.03 seconds

Invisible Signals from the Underground: Bacterial Volatiles Elicit Plant Growth Promotion and Induce Systemic Resistance

  • Ryu, Choong-Min;Farag, Mohammed A.;Pare, Paul. W.;Kloepper, Joseph W.
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2005
  • Plant growth-promoting rhizobacteria (PGPR) are a wide range of root-colonizing bacteria with the capacity to enhance plant growth and control plant pathogens. Here we review recent progress that indicate some PGPR strains release a blend of volatile organic compounds (VOCs) that promote growth in Arabidopsis seedlings and induce resistance against Erwinia carotovora subsp. carotovora. In particular, the volatile components 2,3-butanediol and acetoin released exclusively from the PGPR strains triggered the greatest level of growth promotion and induced systemic resistance. Pharmacological applications of 2,3-butanediol promoted the plant growth and induced resistance, while bacterial mutants blocked in 2,3-butanediol and acetoin synthesis was devoid of growth-promotion and induced resistance capacities. The results suggested that the bacterial VOCs play a critical role in the plant growth promotion and induced resistance by PGPR. Using transgenic and mutant lines of Arabidopsis, we provide evidences that the signal pathway activated by volatiles from one PGPR strain is dependent on cyto-kinin activation for growth promotion and dependent on an ethylene-signaling pathway for induced pathogen resistance. This discovery provides new insight into the role of bacterial VOCs as initiators of both plant growth promotion and defense responses in plants.

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement

  • Sharifi, Rouhallah;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.459-469
    • /
    • 2018
  • Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.

Studies on the Antimicrobial Effect of Wasabi Extracts (고추냉이 추출물의 항균효과에 관한 연구)

  • 서기림
    • Journal of Nutrition and Health
    • /
    • v.28 no.11
    • /
    • pp.1073-1077
    • /
    • 1995
  • The volatile components of Eutrema wasabi were prepared by distillation and ether extraction. The extracts were similar in the color, the odor, and the antimicrobial activity to allylisothiocyanate, the main ingredient of wasabi essential oil. The antimicdrobial activity of the extracts was evaluated and it was found that these had the antibacterial effect against a broad spectrum of pathogenic bacterial such as Staphylococcus, Escherichia, Pseudomonas and Salmonella.

  • PDF

INORGANIC SELENIUM FOR SHEEP II. ITS INFLUENCE ON RUMEN BACTERIAL YIELD, VOLATILE FATTY ACID PRODUCTION AND TOTAL TRACT DIGESTION OF TIMOTHY HAY

  • Serra, A.B.;Nakamura, K.;Matsui, T.;Harumoto, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.91-96
    • /
    • 1994
  • This study was conducted to determine the effect of inorganic selenium (Se) sources on rumen bacterial yield, ruminal volatile fatty acid (VFA) production and total tract digestion of timothy hay (Phlewm pratense L.) in Japanese Corriedale wethers. A $3{\times}3$ Latin square design was used with three wethers, three periods and three treatments. In each period, there was 7 d dietary adjustment followed by 5 d total collection of urine and feces. Ruminal fluid samples were obtained at 0, 1, 3, 5 and 7 h postprandially on the final day of the collection period. The three dietary treatments were: (1) without Se supplementation (control); (2) with Se supplementation as sodium selenate; and (3) sodium selenite at a rate 0.2 mg Se/kg dietary DM. The basal diet was timothy hay fed at 2% of body weight/d. Results indicated that there was slight decrease in rumen bacterial yield of animal supplement with inorganic Se, however, differences over the control were insignificant. It was found that Se content of ruminal fluid was negatively correlated (p < 0.05) to rumen bacterial yield. The various VFA contents and acetate and propionate ratio of the different ruminal fluid samples were insignificant across treatment means and the same manner was observed to the different digestibilities (DM, OM, CP, NDF, ADF and NDS). This study concludes that Se supplementation at 0.2 mg Se/kg dietary DM either from sodium selenate or sodium selenite could not significantly influence rumen bacterial functions.

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo;Kim, Man Su;Choi, Soo-Keun;Oh, Sang-Keun;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.502-511
    • /
    • 2022
  • Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.

Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

  • Cho, Sungback;Hwang, Okhwa;Park, Sungkwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1362-1370
    • /
    • 2015
  • This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05) in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05) in CP 15% than in CP 20% group. There was a positive correlation (p<0.05) between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

The Effects of Fiber Source on Organ Weight, Digesta pH, Specific Activities of Digestive Enzymes and Bacterial Activity in the Gastrointestinal Tract of Piglets

  • Ma, Yongxi;Li, Defa;Qiao, S.Y.;Huang, C.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1482-1488
    • /
    • 2002
  • The aim of this study was to explore the effects of fiber sources on gut development and bacterial activity in the gastrointestinal tract of piglets. Eighteen crossbred (Duroc${\times}$Landrace${\times}$Yorkshire) barrows were fed a basal diet based on corn plus soybean meal or similar diets in which a portion of the corn and soybean was replaced by 5% wheat bran or 5% sugar beet pulp. The results indicate that pigs fed diets containing 5% wheat bran or 5% sugar beet pulp had lower liver weights than control pigs (p<0.01). The relative weight of the pancreas in pigs fed diets containing 5% sugar beet pulp was greater than that of control pigs or pigs fed diets containing 5% wheat bran (p<0.05). The pH of the ileal digesta of pigs fed the diet containing 5% wheat bran was higher than that of control pigs or pigs fed the diet containing 5% sugar beet pulp (p<0.05). The lipase activity in the distal jejunum, proximal, and distal ileum of pigs fed the control diet was higher than that of pigs fed the diets containing 5% wheat bran or 5% sugar beet pulp (p<0.05). The concentration of volatile fatty acids anterior to the caecum was greater for the pigs fed the diet containing 5% sugar beet pulp, while the concentration of volatile fatty acids posterior to the ileum was greater for the pigs fed the diet containing 5% wheat bran. This means that sugar beet pulp increased the bacterial fermentation precaecum, while wheat bran increased the bacterial fermentation post-ileum. The concentration of bacterial nitrogen and bacterial protein/total protein in ileal digesta of pigs fed the control diet was higher (p<0.05) than that of pigs fed the diets contained either fiber source. Bacterial protein/total protein in the feces of pigs fed the diet containing 5% sugar beet pulp was higher than that of pigs fed the control diet. This means that inclusion of 5% wheat bran or sugar beet pulp in diets influenced the development of the digestive tract of piglet. The mechanism by which dietary fiber reduced specific activity of lipase needs further consideration. Dietary fiber influenced the bacterial activity in the digestive tract of piglets, sugar beet pulp increased the fermentation in the upper gastrointestinal tract, and while wheat bran increased the fermentation in the lower gastrointestinal tract.

Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry

  • Yang, Ji-Su;Lee, Hae-Won;Song, Hyeyeon;Ha, Ji-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in plant tissues can emit specific volatile molecules with odors that are characteristic of the host cell tissues and PCC species. In this study, we used headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to identify volatile compounds (VCs) in PCC-inoculated cabbage at different storage temperatures. HS-SPME-GC-MS allowed for recognition of extracellular metabolites in PCC-infected cabbages by identifying specific volatile metabolic markers. We identified 4-ethyl-5-methylthiazole and 3-butenyl isothiocyanate as markers of fresh cabbages, whereas 2,3-butanediol and ethyl acetate were identified as markers of soft rot in PCC-infected cabbages. These analytical results demonstrate a suitable approach for establishing non-destructive plant pathogen-diagnosis techniques as alternatives to standard methods, within the framework of developing rapid and efficient analytical techniques for monitoring plant-borne bacterial pathogens. Moreover, our techniques could have promising applications in managing the freshness and quality control of cabbages.

Volatile Flavor Compounds in the Leaves of Fifteen Taxa of Korean Native Chrysanthemum Species

  • Kim, Su Jeong;Ha, Tae Joung;Kim, Jongyun;Nam, Jung Hwan;Yoo, Dong Lim;Suh, Jong Taek;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.558-570
    • /
    • 2014
  • This study was conducted to compare the volatile flavor compounds found in the leaves of 15 taxa of Korean native Chrysanthemum species. The volatile flavor compounds from the taxa were collected using a simultaneous steam distillation and extraction technique and were analyzed using gas chromatography/mass selective detector (GC/MSD). A total of 45 volatile flavor compounds were identified with six functional groups: 14 alcohols, 4 ketones, 19 hydrocarbons, 5 esters, 2 acids, and 1 aldehyde. The main functional group in 15 taxa of Chrysanthemum species was alcohols, accounting for 28.7% of volatile flavor compounds, followed by ketones (21.2%) and hydrocarbons (13.2%). Camphor, which is known for its antimicrobial properties, was the most abundant volatile compound (30%) in C. zawadskii ssp. latilobum and var. leiophyllum. In particular, C. indicum subspecies and C. boreale contained ${\alpha}$-thujone, which has outstanding anti-bacterial, anti-cancer, anti-inflammatory, anti-ulcer, and anti-diabetic efficacies. C. indicum var. albescens could be used in perfumes, since it showed 21 times more camphene than C. indicum. In addition, C. indicum var. acuta contained a fairly high content of 1,8-cineole, which has an inhibitory effect on mutagenesis. C. lineare contained only pentadecanoic acid compounds, whereas other taxa hexadecanoic acids. Overall, the Korean native Chrysanthemum species had considerable variation in volatile flavor compounds in their leaves. This study provides a good indication of specific potential use for various applications.

Effect of Fresh Garlic on Lipid Oxidation and Microbiological Changes of Pork Patties during Refrigerated Storage

  • Park, Sung Yong;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.638-646
    • /
    • 2014
  • The effects of two levels (1.4 vs 2.8%) of fresh garlic on lipid oxidation and microbial growth in pork patties were evaluated. Hunter color (L, a, b), pH, thiobarbituric acid reactive substances (TBARS), oxidative volatile compounds, total bacteria and Enterobacteriaceae in the pork patties with or without fresh garlic were measured during storage at $4^{\circ}C$. Addition of fresh garlic decreased redness (a), while increased pH and yellowness (b) values of the fresh pork patties were observed, regardless of the levels added. The TBARS values of the pork patties were increased with the addition of fresh garlic (p<0.05). Similar results were observed in oxidative volatile compounds. A total of 13 volatile compounds were detected in the patties (5 sulfur-containing compounds, including allyl mercaptan, allyl methyl sulfide, diallyl sulfide, methyl-(E)-propenyl-disulfide, and diallyl disulfide, and the 8 other oxidative compounds, including 1-pentanol, hexanal, 1-hexanol, heptanal, (E)-2-heptenal, 1-octen-3-ol, (E)-2-octenal and nonanal). Fresh garlic accelerated development of oxidative products in the pork patties, especially hexanal and the total oxidative volatile compounds. However, the addition of 1.4 and 2.8% of fresh garlic inhibited the growth of total bacteria and Enterobacteriaceae, indicating low total bacterial counts and Enterobacteriaceae than the controls.