• 제목/요약/키워드: bacterial trypsin

검색결과 22건 처리시간 0.026초

Identification of the sprU Gene Encoding an Additional sprT Homologous Trypsin-Type Protease in Streptomyces griseus

  • YANG HYE-YOUNG;CHOI SI-SUN;CHI WON-JAE;KIM JONG-HEE;KANG DAE-KYUNG;CHUN JAESUN;KANG SANG-SOON;HONG SOON-KWANG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1125-1129
    • /
    • 2005
  • Cloning of a 6.6-kb BamHI digested chromosomal DNA from S. griseus IFO13350 revealed the presence of an additional gene encoding a novel trypsin-like enzyme, named SprU. The SprU protein shows a high homology ($79\%$ identity, $88\%$ similarity) with the SGT protease, which has been reported as a bacterial trypsin in the same strain. The amino acid sequence deduced from the nucleotide sequence of the sprU gene suggests that SprU is produced as a precursor consisting of an amino-terminal presequence (29 amino acid residues), prosequence (4 residues), and mature trypsin consisting of 222 amino acids with a molecular weight of 22.94 kDa and a calculated pI of 4.13. The serine, histidine, and aspartic acid residues composing the catalytic triad of typical serine proteases are also well conserved. When the trypsin activity of the SprU was spectrophotometrically measured by the enzymatic hydrolysis of the artificial chromogenic substrate, N-${alpha}$-benzoyl-DL-arginine-p-nitroanilide, the S. lividans transformant with pWHM3-U gave 3 times higher activity than that of control. When the same recombinant plasmid was introduced into S. griseus, however, the gene dosage effect was not so significant, as in the cases of other genes encoding serine proteases, such as sprA, sprB, and sprD. Although two trypsins, SprU and SGT, have a high degree of homology, the pI values, the gene dosage effect in S. griseus, and the gene arrangement adjacent to the two genes are very different, suggesting that the biochemical and biological function of the SprU might be quite different from that of the SGT.

Lectin Activity and Chemical Characteristics of Escherichia coli, Lactobacillus spp. and Bifidobacterium spp. from Gastrointestinal Mucosa of Growing Pigs

  • Gao, W.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권6호
    • /
    • pp.863-868
    • /
    • 2004
  • Lectin activities and chemical characteristics of Escherichia coli, Lactobacillus spp. and Bifidobacterium spp. originating from the porcine cecal mucosal layer were studied based on hemagglutination assay (HA) and hemagglutination inhibition assay (HIA). Although all the bacterial strains were able to agglutinate erythrocytes of porcine or rabbit origin, much higher HA titers were consistently observed for Lactobacillus spp. than for E. coli or for Bifidobacterium spp. A remarkable reduction in HA titers occurred by the treatment of E. coli and Lactobacillus spp. with protease or trypsin and of Bifidobacterium spp. with protease, trypsin or periodate. There were no significant effects on the HA titers of the three groups of bacteria after the treatment with lipase. Hemagglutination of E. coli was strongly inhibited by D (+)-mannose and D (+)-galactose; Lactobacillus spp. by $\alpha$-L-rhamnose and methyl-$\beta$-galactopyranoside; Bifidobacterium spp. by D (+)-alactose, $\alpha$-L-rhamnose, $\alpha$-L-fucose, L (+)-arabinose, D (+)-mannose, D (-)-fructose at a relatively low concentration (1.43 to 3.75 mg/ml). These results, combined with the enhanced HA activities of the three bacterial strains by modification of rabbit erythrocytes with neuraminidase and abolished HA activity of E. coli after treatment with $\beta$-galactosidase, indicate that it might be the glycoproteinous substances surrounding the surface of the bacterial cells that are responsible for the adhesions of these microorganisms by recognizing the specific receptors on the red blood cell.

Effective Antibacterial Action of Tat (47-58) by Increased Uptake into Bacterial Cells in the Presence of Trypsin

  • Jung, Hyun-Jun;Jeong, Kyu-Shik;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.990-996
    • /
    • 2008
  • In a previous study, we found an antifungal effect on human pathogenic fungi by the cell-penetrating peptide Tat (47-58) derived from HIV-1. Tat (47-58) immediately entered into the fungal nucleus and affected some physiological changes on the intracellular condition. In this study, Tat (47-58) showed a broad spectrum of antibacterial activity against pathogenic bacteria including bacterial clinical isolates. To improve resistance against proteases for use in vivo, we synthesized an analog of Tat (47-58) by substituting the L-amino acid for the D-amino acid. The D-enantiomer of Tat (47-58) also exhibited a broad spectrum of antibacterial activity at almost the same level of L-Tat (47-58) concentration. Unlike L-Tat (47-58), D-Tat (47-58) showed a significant proteolytic resistance against all proteases tested and antimicrobial activities in the presence of trypsin. Moreover, D-Tat (47-58) inhibited MRSA infection in human HeLa cells whereas L-Tat (47-58) partially allowed MRSA infection, and the results were due to the proteolytic resistance of D-Tat (47-58).

진주담치(Mytilus edulis) 추출물의 항균활성 및 단백질 분해효소에 대한 안정성 탐색 (Screening of Antimicrobial Activity and Proteolytic Enzyme Stability of Extract of the Blue Mussel Mytilus edulis)

  • 이지은;서정길
    • 한국수산과학회지
    • /
    • 제54권3호
    • /
    • pp.280-286
    • /
    • 2021
  • This study was performed to screen the antimicrobial activities and proteolytic enzyme stability of the acidified extract of the Blue mussel Mytilus edulis. The acidified extract showed potent antimicrobial activities against Gram-positive bacteria, Bacillus subtilis, and Gram-negative bacteria, Escherichia coli D31, but had no activity against Candida albicans. Treatment of extract with trypsin completely abolished all or significant antibacterial activity against the tested bacteria, but slightly decreased antimicrobial activity against B. subtilis, and treatment of extract with chymotrypsin retained almost antibacterial activity against the tested bacteria except for E. coli D31. To confirm the additional enzyme stability of the extract, antimicrobial activity of the extract was tested after treated with several enzymes. Enzymes treated extract showed potent antimicrobial activity against B. subtilis and its activity was also retained for 5 h after trypsin treatments. Non-proteinaceous materials in the acidified extract also showed strong DNA-binding ability but did not show bacterial membrane permeabilizing ability. All our results indicate that mussel extract might contain the proteinaceous or non-proteinaceous antibacterial materials target not bacterial membrane but intracellular components. These results could be used to develop mussel extract as an additive for the improvement of stability or antimicrobial activity of antibiotics against specific bacteria.

미생물을 이용한 트립신 과대 생산 연구 - Streptomyces용 숙주-벡터계를 이용한 트립신 유전자의 대량발현 최적화 - (Overproduction of Bacterial Trypsin in Streptomyces - Optimization for Streptomyces griseus Trypsin Production by Recombinant Streptomyces)

  • 김종희;홍순광
    • 한국미생물·생명공학회지
    • /
    • 제36권1호
    • /
    • pp.28-33
    • /
    • 2008
  • Streptomyces griseus trypsin (SGT)을 코드하는 sprT 유전자와 그 하류에 존재하는 두 개의 조절 유전자 rsgtR1 및 sgtR2를 동시에 갖고 있는 재조합 벡터 pWHM3-TR1R2를 S. lividans TK24 및 S. griseus IFO 13350에 도입하여, 트립신의 생산성을 더욱 증대시킬 수 있는 배지를 조사하였다. S. lividans TK24/pWHM3-TR1R2의 경우 배양 5일을 기준으로 R2YE에서 가장 높은 생산성(0.74 unit/mL)을 나타냈고, C5/L. (0.66 unit/mL), Livid (0.08 unit/mL), NDSK(0.06 unit/mL) 순으로 나타났다 S. griseus IFO 13350/pWHM3-TR1R2의 경우에는 전반적으로 배양 7일에 트립신 활성이 가장 높았으며, C5/L (1.518 unit/mL), R2YE(1.284 unit/mL), NDSK (0.932 unit/mL), Livid (0.295 unit/mL) 순으로 나타났다. S. griseus IFO 13350/pWHM3-TR1R2를 C5/L 배지에서 7일간 배양한 배양액으로부터 $25%{\sim}60%$ ammonium sulfate 침전, CM-sepharose 및 Sp-sepharose column chromatography를 통하여 트립신을 고순도로 정제할 수 있었다. 최종 purification fold는 6.5배, 순수 정제된 트립신의 specific activity는 69,252 unit/mg, 회수율은 1.4%이었다.

대두단백질(大豆蛋白質)의 효소적(酵素的) 변형(變形) : 분리대두단백질(分離大豆蛋白質)의 기능성(機能性)에 미치는 단백질가수분해(蛋白質加水分解)의 영향(影響) (Enzymatic Modification of Soy Proteins: Effects of Functional Properties of Soy Isolate upon Proteolytic Hydrolysis)

  • 강영주
    • 한국식품과학회지
    • /
    • 제16권2호
    • /
    • pp.211-217
    • /
    • 1984
  • 본(本) 연구(硏究)는 분리(分離) 대두단백질(大豆蛋白質)에 단백분해(蛋白分解) 효소(酵素)를 작용(作用)시킬 때 일어나는 효소반응성(酵素反應性) 및 단백질(蛋白質) 기능성(機能性)에 미치는 영향(影響)을 조사(調査)하였다. 사용(使用)된 효소(酵素)는 동물성(動物性)인 trypsin과 세균성(細菌性)인 alcalase 및 pronase였으며 열(熱) 처리(處理)되지 않은 대두단백질(大豆蛋白質)에 대(對)하여 trypsin보다 세균성(細菌性) 효소(酵素)가 높은 친화력(親和力)을 나타냈으며 열(熱) 처리(處理)된 대두단백질(大豆蛋白質)에 대(對)하여서는 효소종류(酵素種類)에 관계없이 기질농도(基質濃度)가 증가(增加)함에 따라 반응(反應)이 저해(沮害)되었다. 가수분해(加水分解)된 대두단백질(大豆蛋白質)의 전기명동(電氣鳴動) 결과(結果) alcalase가 특이적(特異的)으로 대두단백질(大豆蛋白質) 중(中) 2S 단백질(蛋白質)에 어떤 변화(變化)를 가져오는 것이 관찰되었다. 대두단백질(大豆蛋白質)의 기능성(機能性)에 있어서 효소처리(酵素處理)는 등전점(等電点)에서 $25{\sim}30%$의 가용성(可溶性) 단백질(蛋白質)의 증가(增加)를 가져왔으며 또한 열(熱) 응고성(凝固性)의 증가(增加), 칼슘 침전성(沈澱性)의 감소(減少)를 초래하였다. 그리고 에멀젼 특성(特性), 거품 형성능(形成能) 및 유리(遊離) SH기(基) 등에 대(對)하여서는 큰 변화(變化)가 없었으나 거품 안전성(安全性)은 크게 감소(減少)하는 경향을 보였다.

  • PDF

A Novel Trp-rich Model Antimicrobial Peptoid with Increased Protease Stability

  • Bang, Jeong-Kyu;Nan, Yong-Hai;Lee, Eun-Kyu;Shin, Song-Yub
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2509-2513
    • /
    • 2010
  • In order to increase protease stability of a novel Trp-rich model antimicrobial peptide, $K_6L_2W_3$ (KLWKKWKKWLK-$NH_2$)and investigate the effect of L-amino acid to peptoid residue conversion on biological functions, we synthesized its antimicrobial peptoid, $k_6l_2w_3$. Peptoid $k_6l_2w_3$ had similar bacterial selectivity compared to peptide $k_66L_2W_3$. The bactericidal rate of $k_6l_2w_3$ was somewhat slower than that of $K_6L_2W_3$. Peptoid $k_6l_2w_3$ exhibited very little dye leakage from bacterial outer-membrane mimicking PE/PG liposomes, as observed in $K_6L_2W_3$, indicating that the major target site of $K_6L_2W_3$ and $k_6l_2w_3$ may be not the cell membrane but the cytoplasm of bacteria. Trypsin treatment of $K_6L_2W_3$ completely abolished antimicrobial activities against Escherichia coli and Staphylococcus aureus. In contrast, the antimicrobial activity of $k_6l_2w_3$ was completely preserved after trypsin treatment. Taken together, our results suggested that antimicrobial peptoid $k_6l_2w_3$ can potentially serves as a promising therapeutic agent for the treatment of microbial infection.

식이 섬유소가 어류단백 소화율에 미치는 영향 (Effect of Dietary Fiber on the In Vitro Digestibility of Fish Protein)

  • Ryu, Hong-Soo;Park, Nam-Eun;Lee, Kang-Ho
    • 한국식품영양과학회지
    • /
    • 제21권3호
    • /
    • pp.255-262
    • /
    • 1992
  • 단백소화율에 미치는 식이 섬유소의 영향에 대하여 알아보기 위해, 채소류(상치, 깻잎, 고추. 다시마)로부터 추출한 식이 섬유소와 시판용 정제 식이 섬유소 (cellulose, pectin, sodium alginate, gum karaya)를 어류 단백질인 말쥐치 단백질(냉동건조육 및 myofibrils)에 첨가 반응시켜, 단백질 의 소화율에 어느 정도 영향을 미치는가에 대해 알아보았다. 각 시료의 중성세제 추출섬유소 (neutral detergent fiber) 함량은 24.21%(고추) 9.75%(다시마)의 범위였고, 산성세제 추출섬유소 (acid detergent fiber) 함량은 20.85%(고추) 11.97%(깻잎)의 범위였으며, 수용성 섬유소 함량은 13.79%(다시마) 4.41%(상치)의 범위였다. 말쥐치 단백질에 대한 식이 섬유소의 반응 비율을 1 : 1 (wt/wt)로 하고, 37$^{\circ}C$에서 2시간 동안 반응시켰을 때. 말쥐치 단백소화율은 정제 식이 섬유소 첨가의 경우, 1.52%(cellulose) 9.97%(pectin)가 감소되었고. 추출한 식이 섬유소 첨가의 경우, 5.15%(고추) 12.36%(다시마)가 감소되었다. 섬유소의 trypsin 활성저해능은 단백소화율이 감소함에 따라 증가하여, ANRC casein에 대한 soybean trypsin inhibitor 22mg/g (cellulose) 61.82mg/g(gum karaya), 49.75mg/g(고추) 171.52mg/g(상치)에 상응하는 것으로 나타났다. 정제 식이 섬유소에 의한 단백분해효소의 활성 변화는 sodium alginate를 제외하고는 거의 없어, 어류 단백소화율의 저하는 식이 섬유소가 단백질에 직접 결합하여 비소화성 물질을 형성한 결과가 주도하리라 생각되었다. 말쥐치 단백질과 섬유소를 반응시킨 것을 효소 가수분해시킨 후에 측정한 유리 필수 아미노산의 함량은 sodium alginate와 다시마 섬유소의 경우 현저하게 저하하였으며(75% 이상), isoleucine과 valine이 크게 영향을 받았다.

  • PDF

Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, Paenibacillus sp. LX-20 as a Potential Feed Enzyme Source

  • Park, In-Kyung;Lee, Jae-Koo;Cho, Jaie-Soon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.852-860
    • /
    • 2012
  • An Antarctic bacterial isolate displaying extracellular ${\alpha}$-galactosidic activity was named Paenibacillus sp. LX-20 based on 16S rRNA gene sequence analysis. Optimal activity for the LX-20 ${\alpha}$-galactosidase occurred at pH 6.0-6.5 and $45^{\circ}C$. The enzyme immobilized on the smart polymer Eudragit L-100 retained 70% of its original activity after incubation for 30 min at $50^{\circ}C$, while the free enzyme retained 58% of activity. The enzyme had relatively high specificity for ${\alpha}$-D-galactosides such as p-nitrophenyl-${\alpha}$-galactopyranoside, melibiose, raffinose and stachyose, and was resistant to some proteases such as trypsin, pancreatin and pronase. Enzyme activity was almost completely inhibited by $Ag^+$, $Hg^{2+}$, $Cu^{2+}$, and sodium dodecyl sulfate, but activity was not affected by ${\beta}$-mercaptoethanol or EDTA. LX-20 ${\alpha}$-galactosidase may be potentially useful as an additive for soybean processing in the feed industry.

콩 불마름병균의 생장 조건이 박테리오신인 glycinecin의 생성에 미치는 영향 (Influence of Growth Conditions for the Production of Bacteriocin, Glycinecin, Produced by Xanthmonas campestris pv. glycines 8ra)

  • Woo Jung;Sunggi Heu;Cho, Yong-Sup
    • 한국식물병리학회지
    • /
    • 제14권5호
    • /
    • pp.376-381
    • /
    • 1998
  • Xanthomonas campestris pv. glycines 8ra causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecin, against related bacteria such as Xanthomonas campestris pv. vesicatoria. The antimicrobial activity of the glycinecin was effective to most tested Xanthomonas species. X. c. pv. glycines 8ra was able to produce the glycinecin in liquid media as well as solid media. Maximal productivity of glycinecin was obtained at 3$0^{\circ}C$ in the early stationary phase of growth of the X. c. pv. glycines 8ra. The production of glycinecin was not dependent on the initial inoculum level but on cell density. Glycinecin was very sensitive to proteolytic enzymes such as trypsin and proteinase K but resistant to DNase and RNase. The culture supernatant of X. c. pv. glycines 8ra retained some of its antimicrobial activity after 15 min at 6$0^{\circ}C$. It is stable at wide range of pH. The glycinecin showed the bactericidal activity after the adsorption of the glycinecin to the sensitive bacterial cell.

  • PDF