Browse > Article

Effective Antibacterial Action of Tat (47-58) by Increased Uptake into Bacterial Cells in the Presence of Trypsin  

Jung, Hyun-Jun (Department of Microbiology, College of Natural Sciences, Kyungpook National University)
Jeong, Kyu-Shik (College of Veterinary Medicine, Kyungpook National University)
Lee, Dong-Gun (Department of Microbiology, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.5, 2008 , pp. 990-996 More about this Journal
Abstract
In a previous study, we found an antifungal effect on human pathogenic fungi by the cell-penetrating peptide Tat (47-58) derived from HIV-1. Tat (47-58) immediately entered into the fungal nucleus and affected some physiological changes on the intracellular condition. In this study, Tat (47-58) showed a broad spectrum of antibacterial activity against pathogenic bacteria including bacterial clinical isolates. To improve resistance against proteases for use in vivo, we synthesized an analog of Tat (47-58) by substituting the L-amino acid for the D-amino acid. The D-enantiomer of Tat (47-58) also exhibited a broad spectrum of antibacterial activity at almost the same level of L-Tat (47-58) concentration. Unlike L-Tat (47-58), D-Tat (47-58) showed a significant proteolytic resistance against all proteases tested and antimicrobial activities in the presence of trypsin. Moreover, D-Tat (47-58) inhibited MRSA infection in human HeLa cells whereas L-Tat (47-58) partially allowed MRSA infection, and the results were due to the proteolytic resistance of D-Tat (47-58).
Keywords
Tat (47-58); cell-penetrating peptide; antibacterial activity; proteolytic resistance; MRSA infection;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
1 Chen, Y., A. I. Vasil, L. Rehaume, C. T. Mant, J. L. Burns, M. L. Vasil, R. E. W. Hancock, and R. S. Hodges. 2006. Comparison of biophysical and biologic properties of alphahelical enantiomeric antimicrobial peptides. Chem. Biol. Drug Des. 67: 162-173   DOI   ScienceOn
2 Hancock, R. E. W. and R. Lehrer. 1998. Cationic peptides: A new source of antibiotics. Trends Biotechnol. 16: 82-88   DOI   ScienceOn
3 Helmerhorst, E. J., I. M. Reijnders, W. V. Hof, E. C. I. Veerman, and A. V. N. Amerongen. 1999. A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett. 449: 105-110   DOI
4 Jung, H. J., Y. Park, K. S. Hahm, and D. G. Lee. 2006. Biological activity of Tat (47-58) peptide on human pathogenic fungi. Biochem. Biophys. Res. Commun. 345: 222-228   DOI   ScienceOn
5 Jung, H. J., Y. B. Seu, and D. G. Lee. 2007. Candicidal action of resveratrol isolated from grapes on human pathogenic yeast C. albicans. J. Microbiol. Biotechnol. 17: 1324-1329   과학기술학회마을
6 Otvos, Jr. L. 2005. Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci. 11: 697-706   DOI   ScienceOn
7 Shimoda, M., K. Ohki, Y. Shimamoto, and O. Kohashi. 1995. Morphology of defensin-treated Staphylococcus aureus. Infect. Immun. 63: 2886-2891
8 Yang, L., T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huand. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81: 1475-1485   DOI   ScienceOn
9 Yoon, J., Y. Jung, S. Hong, S. Kim, M. Shin, D. Lee, W. Shin, W. Min, and S. Paik. 2004. Characteristics of HIV-Tat protein transduction domain. J. Microbiol. 42: 328-335
10 Sugiarto, H. and P. L. Yu. 2007. Mechanisms of action of ostrich beta-defensins against Escherichia coli. FEMS Microbiol. Lett. 270: 195-200   DOI   ScienceOn
11 Christensen, B., J. Fink, R. B. Merrifield, and D. Mauzerall. 1988. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA 85: 5072-5076
12 Bessin, Y., N. Saint, L. Marri, D. Marchini, and G. Molle. 2004. Antibacterial activity and pore-forming properties of ceratotoxins: A mechanism of action based on the barrel stave model. Biochim. Biophys. Acta 1667: 148-156   DOI   ScienceOn
13 Ulvatne, H., O. Samuelsen, H. H. Haukland, M. Kramer, and L. H. Vorland. 2004. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol. Lett. 237: 377-384
14 Lindgren, M., M. Hallbrink, A. Prochiantz, and u. Langel. 2000. Cell-penetrating peptides. Trends Pharmacol. Sci. 21: 99-103   DOI   ScienceOn
15 Subbalakshmi, C., R. Nagaraj, and N. Sitaram. 2001. Biological activities of retro and diastereo analogs of a 13-residue peptide with antimicrobial and hemolytic activities. J. Pept. Res. 57: 59-67   DOI   ScienceOn
16 Bechinger, B. 1997. Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156: 197-211   DOI   ScienceOn
17 Yang, J. Y., S. Y. Shin, S. S. Lim, K. S. Hahm, and Y. Kim. 2006. Structure and bacterial cell selectivity of a fish-derived antimicrobial peptide, pleurocidin. J. Microbiol. Biotechnol. 16: 880-888   과학기술학회마을
18 Boman, H. G., B. Agerberth, and A. Boman. 1993. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 61: 2978-2984
19 Ishitsuka, Y., D. S. Pham, A. J. Waring, R. I. Lehrer, and K. Y. Lee. 2006. Insertion selectively of antimicrobial peptide protegrin-1 into lipid monolayers: Effect of head group electrostatics and tail group packing. Biochem. Biophys. Acta 1758: 1450-1460   DOI   ScienceOn
20 Sung, W. S., I. S. Lee, and D. G. Lee. 2007. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J. Microbiol. Biotechnol. 17: 1797-1804   과학기술학회마을
21 Blondelle, S. E. and R. A. Houghten. 1992. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry 31: 12688-12694   DOI   ScienceOn
22 Brugidou, J., C. Legrand, J. Mery, and A. Rabie. 1995. The retro-inverso form of a homeobox-derived short peptide is rapidly internalized by cultured neurons: A new basis for an efficient intracellular delivery system. Biochem. Biophys. Res. Commun. 214: 685-693   DOI   ScienceOn
23 Palm, C. V., M. Jayamanne, M. Kjellander, and M. Hallbrink. Peptide degradation is a critical determinant for cell-penetrating peptide uptake. Biochem. Biophys. Acta 1768: 1769-1776
24 Sugiarto, H. and P. Yu. 2004. Avian antimicrobial peptides: The defense role of $\beta$-defensins. Biochem. Biophys. Res. Commun. 323: 721-727   DOI   ScienceOn
25 National Committee for Clinical Laboratory Standards. 2003. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 6th Ed. Approved standard M7- A6. National Committee for Clinical Laboratory Standards, Wayne, PA
26 Subbalakshmi, C. and N. Sitaram. 1998. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 160: 91-96   DOI   ScienceOn
27 Ruben, S., A. Perkins, R. Purcell, K. Joung, R. Sia, R. Burghoff, W. A. Haseltine, and C. A. Rosen. 1989. Structural and functional characterization of human immunodeficiency virus tat protein. J. Virol. 63: 1-8
28 Saint, N., H. Cadiou, Y. Bessin, and G. Molle. 2002. Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim. Biophys. Acta 1564: 359-364   DOI   ScienceOn
29 Strebel, K. 2003. Virus-host interactions: Role of HIV proteins Vif, Tat, and Rev. AIDS 17: S25-S34   DOI   ScienceOn
30 Izadpanah, A. and R. L. Gello. 2005. Antimicrobial peptides. J. Am. Acad. Dermatol. 52: 381-390   DOI   ScienceOn
31 Hancock, R. E. W. and D. S. Chapple. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323
32 Pouny, Y., D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipids membranes. Biochemistry 31: 12416-12423   DOI   ScienceOn
33 Fjell, C. D., R. E. W. Hancock, and A. Cherkasov. 2007. AMPer: A database and an automated discovery tool for antimicrobial peptides. Bioinformatics 23: 1148-1155   DOI   ScienceOn