• Title/Summary/Keyword: bacterial trypsin

Search Result 22, Processing Time 0.027 seconds

Identification of the sprU Gene Encoding an Additional sprT Homologous Trypsin-Type Protease in Streptomyces griseus

  • YANG HYE-YOUNG;CHOI SI-SUN;CHI WON-JAE;KIM JONG-HEE;KANG DAE-KYUNG;CHUN JAESUN;KANG SANG-SOON;HONG SOON-KWANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1125-1129
    • /
    • 2005
  • Cloning of a 6.6-kb BamHI digested chromosomal DNA from S. griseus IFO13350 revealed the presence of an additional gene encoding a novel trypsin-like enzyme, named SprU. The SprU protein shows a high homology ($79\%$ identity, $88\%$ similarity) with the SGT protease, which has been reported as a bacterial trypsin in the same strain. The amino acid sequence deduced from the nucleotide sequence of the sprU gene suggests that SprU is produced as a precursor consisting of an amino-terminal presequence (29 amino acid residues), prosequence (4 residues), and mature trypsin consisting of 222 amino acids with a molecular weight of 22.94 kDa and a calculated pI of 4.13. The serine, histidine, and aspartic acid residues composing the catalytic triad of typical serine proteases are also well conserved. When the trypsin activity of the SprU was spectrophotometrically measured by the enzymatic hydrolysis of the artificial chromogenic substrate, N-${alpha}$-benzoyl-DL-arginine-p-nitroanilide, the S. lividans transformant with pWHM3-U gave 3 times higher activity than that of control. When the same recombinant plasmid was introduced into S. griseus, however, the gene dosage effect was not so significant, as in the cases of other genes encoding serine proteases, such as sprA, sprB, and sprD. Although two trypsins, SprU and SGT, have a high degree of homology, the pI values, the gene dosage effect in S. griseus, and the gene arrangement adjacent to the two genes are very different, suggesting that the biochemical and biological function of the SprU might be quite different from that of the SGT.

Lectin Activity and Chemical Characteristics of Escherichia coli, Lactobacillus spp. and Bifidobacterium spp. from Gastrointestinal Mucosa of Growing Pigs

  • Gao, W.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.863-868
    • /
    • 2004
  • Lectin activities and chemical characteristics of Escherichia coli, Lactobacillus spp. and Bifidobacterium spp. originating from the porcine cecal mucosal layer were studied based on hemagglutination assay (HA) and hemagglutination inhibition assay (HIA). Although all the bacterial strains were able to agglutinate erythrocytes of porcine or rabbit origin, much higher HA titers were consistently observed for Lactobacillus spp. than for E. coli or for Bifidobacterium spp. A remarkable reduction in HA titers occurred by the treatment of E. coli and Lactobacillus spp. with protease or trypsin and of Bifidobacterium spp. with protease, trypsin or periodate. There were no significant effects on the HA titers of the three groups of bacteria after the treatment with lipase. Hemagglutination of E. coli was strongly inhibited by D (+)-mannose and D (+)-galactose; Lactobacillus spp. by $\alpha$-L-rhamnose and methyl-$\beta$-galactopyranoside; Bifidobacterium spp. by D (+)-alactose, $\alpha$-L-rhamnose, $\alpha$-L-fucose, L (+)-arabinose, D (+)-mannose, D (-)-fructose at a relatively low concentration (1.43 to 3.75 mg/ml). These results, combined with the enhanced HA activities of the three bacterial strains by modification of rabbit erythrocytes with neuraminidase and abolished HA activity of E. coli after treatment with $\beta$-galactosidase, indicate that it might be the glycoproteinous substances surrounding the surface of the bacterial cells that are responsible for the adhesions of these microorganisms by recognizing the specific receptors on the red blood cell.

Effective Antibacterial Action of Tat (47-58) by Increased Uptake into Bacterial Cells in the Presence of Trypsin

  • Jung, Hyun-Jun;Jeong, Kyu-Shik;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.990-996
    • /
    • 2008
  • In a previous study, we found an antifungal effect on human pathogenic fungi by the cell-penetrating peptide Tat (47-58) derived from HIV-1. Tat (47-58) immediately entered into the fungal nucleus and affected some physiological changes on the intracellular condition. In this study, Tat (47-58) showed a broad spectrum of antibacterial activity against pathogenic bacteria including bacterial clinical isolates. To improve resistance against proteases for use in vivo, we synthesized an analog of Tat (47-58) by substituting the L-amino acid for the D-amino acid. The D-enantiomer of Tat (47-58) also exhibited a broad spectrum of antibacterial activity at almost the same level of L-Tat (47-58) concentration. Unlike L-Tat (47-58), D-Tat (47-58) showed a significant proteolytic resistance against all proteases tested and antimicrobial activities in the presence of trypsin. Moreover, D-Tat (47-58) inhibited MRSA infection in human HeLa cells whereas L-Tat (47-58) partially allowed MRSA infection, and the results were due to the proteolytic resistance of D-Tat (47-58).

Screening of Antimicrobial Activity and Proteolytic Enzyme Stability of Extract of the Blue Mussel Mytilus edulis (진주담치(Mytilus edulis) 추출물의 항균활성 및 단백질 분해효소에 대한 안정성 탐색)

  • Lee, Ji-Eun;Seo, Jung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.3
    • /
    • pp.280-286
    • /
    • 2021
  • This study was performed to screen the antimicrobial activities and proteolytic enzyme stability of the acidified extract of the Blue mussel Mytilus edulis. The acidified extract showed potent antimicrobial activities against Gram-positive bacteria, Bacillus subtilis, and Gram-negative bacteria, Escherichia coli D31, but had no activity against Candida albicans. Treatment of extract with trypsin completely abolished all or significant antibacterial activity against the tested bacteria, but slightly decreased antimicrobial activity against B. subtilis, and treatment of extract with chymotrypsin retained almost antibacterial activity against the tested bacteria except for E. coli D31. To confirm the additional enzyme stability of the extract, antimicrobial activity of the extract was tested after treated with several enzymes. Enzymes treated extract showed potent antimicrobial activity against B. subtilis and its activity was also retained for 5 h after trypsin treatments. Non-proteinaceous materials in the acidified extract also showed strong DNA-binding ability but did not show bacterial membrane permeabilizing ability. All our results indicate that mussel extract might contain the proteinaceous or non-proteinaceous antibacterial materials target not bacterial membrane but intracellular components. These results could be used to develop mussel extract as an additive for the improvement of stability or antimicrobial activity of antibiotics against specific bacteria.

Overproduction of Bacterial Trypsin in Streptomyces - Optimization for Streptomyces griseus Trypsin Production by Recombinant Streptomyces (미생물을 이용한 트립신 과대 생산 연구 - Streptomyces용 숙주-벡터계를 이용한 트립신 유전자의 대량발현 최적화 -)

  • Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • The expression vector (pWHM3-TR1R2) for sprT gene encoding Streptomyces griseus trypsin (SGT) followed by two regulatory genes, sgtR1 and sgtR2, was introduced into Streptomyces lividans TK24 and Streptomyces griseus IFO 13350. Various media with different compositions were used to maximize the productivity of SGT in the recombinant trains. he SGT productivity was best when the transformant of S. lividans TK24 was cultivated in R2YE medium (0.74 unit/mL) at 5 days of cultivation. C5/L (0.66 unit/mL) medium also gave a good productivity, but Livid (0.08 unit/mL) and NDSK (0.06 unit/mL) yielded poor productivities. S. griseus IFO 13350/pWHM3-TR1R2 produced SGT by 1.518 unit/mL (C5/L), 1.284unit/mL (R2YE),0.932 unit/mL (NDSK), and 0.295 unit/mL (Livid) at 7 days of cultivation, which was much higher than those from S. lividans TK24/TR1R2. The SGT protein was purified from the culture broth of S. griseus IFO 13350/pWHM3-TR1R2 in C5/L to homogeneity via ammonium sulfate fractionation, and CM-sepharose and SP-sepharose column chromatographies. The specific activity of purified SGT was 69,252 unit/mg, and the final purification fold and recovery yield were 6.5 and 1.4%, respectively.

Enzymatic Modification of Soy Proteins: Effects of Functional Properties of Soy Isolate upon Proteolytic Hydrolysis (대두단백질(大豆蛋白質)의 효소적(酵素的) 변형(變形) : 분리대두단백질(分離大豆蛋白質)의 기능성(機能性)에 미치는 단백질가수분해(蛋白質加水分解)의 영향(影響))

  • Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.211-217
    • /
    • 1984
  • To study affinity of proteolytic enzymes to soy proteins, the physicochemical and functional properties of enzymatically modified protein products, kinetic parameters and degree of hydrolysis were measured using trypsin, alcalase (serine type protease) and pronase. Bacterial alcalase and pronase showed much greater affinity to soy protein than animal intestinal trypsin. This effect was very significant when unheated soy isolate was used as a substrate. Specific activities of these enzymes decreased with the increment of substrate concentration (over 2.0%, w/v) when heat denatured soy protein was used as a substrate. However, the decrease in specific activity was negligible at substrate concentrations lower than 2.0%. Polyacrylamide gel electrophoretic results showed that the pattern of 2S protein band changed distinctly in alcalase hydrolysis as compared with those of trypsin and pronase. Protein solubilities of alcalase and pronase hydrolyzates increased by 25-30%, at their pI (pH 5.0) over the control. Virtually no change was observed in solubility by trypsin hydrolysis. Heat coagulability and calcium-tolerance of the protein increased by enzymatic hydrolysis. No clear tendency, however, was observed for emulsion properties, foam expansion and the amount of free -SH groups. The enzyme treatment considerably decreased foam stability.

  • PDF

A Novel Trp-rich Model Antimicrobial Peptoid with Increased Protease Stability

  • Bang, Jeong-Kyu;Nan, Yong-Hai;Lee, Eun-Kyu;Shin, Song-Yub
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2509-2513
    • /
    • 2010
  • In order to increase protease stability of a novel Trp-rich model antimicrobial peptide, $K_6L_2W_3$ (KLWKKWKKWLK-$NH_2$)and investigate the effect of L-amino acid to peptoid residue conversion on biological functions, we synthesized its antimicrobial peptoid, $k_6l_2w_3$. Peptoid $k_6l_2w_3$ had similar bacterial selectivity compared to peptide $k_66L_2W_3$. The bactericidal rate of $k_6l_2w_3$ was somewhat slower than that of $K_6L_2W_3$. Peptoid $k_6l_2w_3$ exhibited very little dye leakage from bacterial outer-membrane mimicking PE/PG liposomes, as observed in $K_6L_2W_3$, indicating that the major target site of $K_6L_2W_3$ and $k_6l_2w_3$ may be not the cell membrane but the cytoplasm of bacteria. Trypsin treatment of $K_6L_2W_3$ completely abolished antimicrobial activities against Escherichia coli and Staphylococcus aureus. In contrast, the antimicrobial activity of $k_6l_2w_3$ was completely preserved after trypsin treatment. Taken together, our results suggested that antimicrobial peptoid $k_6l_2w_3$ can potentially serves as a promising therapeutic agent for the treatment of microbial infection.

Effect of Dietary Fiber on the In Vitro Digestibility of Fish Protein (식이 섬유소가 어류단백 소화율에 미치는 영향)

  • Ryu, Hong-Soo;Park, Nam-Eun;Lee, Kang-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.3
    • /
    • pp.255-262
    • /
    • 1992
  • In vitro digestibility of filefish, protein was substantially decreased by fiber constituents in the follow-ing order : pectin (9.97%), gum karaya (7.03%), sodium alginate (6.12%),and cellulose (1.52%). The order of reduction by fibrous residues from vegetables ranked as follows : sea tangle (12.36%), Ro-maine lettuce (11.12%), perillar leaf (8.96%), and green pepper (5.15%). The inhibitory effect of the dietary fibers towards filefish protein digestion, expressed as soybean trypsin inhibitor equivalents, in-creased with added levels, but the inhibition differed with the sources of dietary fibers. Sea tangle and sodium alginate were most active in decreasing the concentration of essential amino acid from filefish protein hydrolysis. Sodium alginate exerted an inhibitory effect on the activity of trypsin, but the other fiber constituents did not have an inhibitory potency on trypsin and bacterial pretense (Streptomyces griceus). Results supported that dietary fiber components may reduce protein digestibility through the interaction of dietary fiber components with filefish protein.

  • PDF

Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, Paenibacillus sp. LX-20 as a Potential Feed Enzyme Source

  • Park, In-Kyung;Lee, Jae-Koo;Cho, Jaie-Soon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.852-860
    • /
    • 2012
  • An Antarctic bacterial isolate displaying extracellular ${\alpha}$-galactosidic activity was named Paenibacillus sp. LX-20 based on 16S rRNA gene sequence analysis. Optimal activity for the LX-20 ${\alpha}$-galactosidase occurred at pH 6.0-6.5 and $45^{\circ}C$. The enzyme immobilized on the smart polymer Eudragit L-100 retained 70% of its original activity after incubation for 30 min at $50^{\circ}C$, while the free enzyme retained 58% of activity. The enzyme had relatively high specificity for ${\alpha}$-D-galactosides such as p-nitrophenyl-${\alpha}$-galactopyranoside, melibiose, raffinose and stachyose, and was resistant to some proteases such as trypsin, pancreatin and pronase. Enzyme activity was almost completely inhibited by $Ag^+$, $Hg^{2+}$, $Cu^{2+}$, and sodium dodecyl sulfate, but activity was not affected by ${\beta}$-mercaptoethanol or EDTA. LX-20 ${\alpha}$-galactosidase may be potentially useful as an additive for soybean processing in the feed industry.

Influence of Growth Conditions for the Production of Bacteriocin, Glycinecin, Produced by Xanthmonas campestris pv. glycines 8ra (콩 불마름병균의 생장 조건이 박테리오신인 glycinecin의 생성에 미치는 영향)

  • Woo Jung;Sunggi Heu;Cho, Yong-Sup
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.376-381
    • /
    • 1998
  • Xanthomonas campestris pv. glycines 8ra causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecin, against related bacteria such as Xanthomonas campestris pv. vesicatoria. The antimicrobial activity of the glycinecin was effective to most tested Xanthomonas species. X. c. pv. glycines 8ra was able to produce the glycinecin in liquid media as well as solid media. Maximal productivity of glycinecin was obtained at 3$0^{\circ}C$ in the early stationary phase of growth of the X. c. pv. glycines 8ra. The production of glycinecin was not dependent on the initial inoculum level but on cell density. Glycinecin was very sensitive to proteolytic enzymes such as trypsin and proteinase K but resistant to DNase and RNase. The culture supernatant of X. c. pv. glycines 8ra retained some of its antimicrobial activity after 15 min at 6$0^{\circ}C$. It is stable at wide range of pH. The glycinecin showed the bactericidal activity after the adsorption of the glycinecin to the sensitive bacterial cell.

  • PDF