• 제목/요약/키워드: bacterial toxin

검색결과 126건 처리시간 0.03초

Production of the polyclonal subunit C protein antibody against Aggregatibacter actinomycetemcomitans cytolethal distending toxin

  • Lee, Su-Jeong;Park, So-Young;Ko, Sun-Young;Ryu, So-Hyun;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.335-342
    • /
    • 2008
  • Purpose: Cytolethal distending toxin (CDT) considered as a key factor of localized aggressive periodontitis, endocarditis, meningitis, and osteomyelitis is composed of five open reading frames (ORFs). Among of them, the individual role of CdtA and CdtC is not clear; several reports presents that CDT is an AB2 toxin and they enters the host cell via clathrin-coated pits or through the interaction with GM3 ganglioside. So, CdtA, CdtC, or both seem to be required for the delivery of the CdtB protein into the host cell. Moreover, recombinant CDT was suggested as good vaccine material and antibody against CDT can be used for neutralization or for a detection kit. Materials and Methods: We constructed the pET28a-cdtC plasmid from Aggregatibacter actinomycetemcomitans Y4 by genomic DNA PCR and expressed in BL21 (DE3) Escherichia coli system. We obtained the antibody against the recombinant CdtC in mice system. Using the anti-CdtC antibody, we test the native CdtC detection by ELISA and Western Blotting and confirm the expression time of native CdtC protein during the growth phase of A. actinomycetemcomitans. Results: In this study we reconstructed CdtC subunit of A. actinomycetemcomitans Y4 and generated the anti CdtC antibody against recombinant CdtC subunit expressed in E. coli system. Our anti CdtC antibody can be interacting with recombinant CdtC and native CDT in ELISA and Western system. Also, CDT holotoxin existed at 24h but not at 48h meaning that CDT holotoxin was assembled at specific time during the bacterial growth. Conclusion: In conclusion, we thought that our anti CdtC antibody could be used mucosal adjuvant or detection kit development, because it could interact with native CDT holotoxin.

Functional Characterization of the C-Terminus of YhaV in the Escherichia coli PrlF-YhaV Toxin-Antitoxin System

  • Choi, Wonho;Yoon, Min-Ho;Park, Jung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.987-996
    • /
    • 2018
  • Bacterial programmed cell death is regulated by the toxin-antitoxin (TA) system. YhaV (toxin) and Pr1F (antitoxin) have been recently identified as a type II TA system in Escherichia coli. YhaV homologs have conserved active residues within the C-terminus, and to characterize the function of this region, we purified native YhaV protein (without denaturing) and constructed YhaV proteins of varying lengths. Here, we report a new low-temperature method of purifying native YhaV, which is notable given the existing challenges of purifying this highly toxic protein. The secondary structures and thermostability of the purified native protein were characterized and no significant structural destruction was observed, suggesting that the observed inhibition of cell growth in vivo was not the result of structural protein damage. However, it has been reported that excessive levels of protein expression may result in protein misfolding and changes in cell growth and mRNA stability. To exclude this possibility, we used an [$^{35}S$]-methionine prokaryotic cell-free protein synthesis system in vitro in the presence of purified YhaV, and two C-terminal truncated forms of this protein (YhaV-L and YhaV-S). Our results suggest that the YhaV C-terminal region is essential for mRNA interferase activity, and the W143 or H154 residues may play an analogous role to Y87 of RelE.

유체 흐름 안에서 두 종의 생물막 성장 시뮬레이션 모델 (Simulation Model of Dual-Species Biofilm Growth in Hydrodynamic Flow)

  • 전원주;이상희
    • 한국시뮬레이션학회논문지
    • /
    • 제20권1호
    • /
    • pp.97-105
    • /
    • 2011
  • 하천에서, 생물막은 녹갈색의 얇은 막의 형태로 돌, 식물, 그리고 기타 구조물의 표면에 부착되어 있다. 생물막은 주로 영양물의 순환, 수질정화, 바닥 침전물 제거, 그리고 먹이사슬내의 에너지 흐름에 매우 중요한 역할을 한다. 본 연구에서, 우리는 유체 흐름 안에서, 독소-생산 종과 독소-민감 종의 복합적 생물막을 전산 모사하는 모델을 개발하였다. 유체 흐름으로는 균일한 흐름과 불 균일한 흐름 두 가지를 고려하였다. 균일한 흐름은 확률 프로세스로 구현되었으며, 불 균일한 흐름은 나비어-스톡스 방정식으로 구현되었다. 모델에서, 독소-생산종과 독소-민감종 간의 상호작용을 고려하기 위해, 종 개체의 번식률과 사망률이 고려되어졌다. 우리는 서로 다른 두 유체 흐름 내에서 전산 모사 되어진 생물막의 구조적 형상에 대해서 간략히 논의 하였다.

Hisrological Alterations and Immune Response Induced by Pet Toxin During Colonization with Enteroaggregative Escherichia coil (EAEC) in a Mouse Model Infection

  • Eslava, Carlos;Sainz, Teresita;Perez, Julia;Fresan, Ma.Cristina;Flores, Veronica;Jimenez, Luis;Hernandez, Ulises;Herrera, Ismael
    • Journal of Microbiology
    • /
    • 제40권2호
    • /
    • pp.91-97
    • /
    • 2002
  • Enteroaggregative E. coil (EAEC) is an important aethiological causal agent of diarrhea in people of developed and undeveloped countries. Different in vitro and in vivo models have been proposed to study the pathdgenic and immune mechanisms of EAEC infaction. The aim of this study was to analyze whether BALB/c mice could be used as an animal model to study EAEC pathogenesis Six-week-old BALB/c mice were inoculated with EAEC strain 042 (044:H88) nalidixic acid resistant, and re-inoc-ulated ten days after. Mice feces were monitored for the presence of the EAEC strain over a period of 20 days . Bacteria were enumerated on MacConkey agar containing 100$\mu$g of nalidixic acid per ml. Results showed that 35% of the animals were colonized for 3 days, 15% for 5 and 10% for more than 7 days . After re-inoculation only 16% of the animals remained colonized for more than 3 days. During the necropsy, the intestinal fluid of same of the infected animals presented mucus and blood. Six of these fluids showed the presence of IgA antibodies againset Pet toxin and IgG natibodies raised against the toxin were also detected in the animal serum. Histopathologic evidence confirms the stimulation of mucus hypersecretion, an increased amount of goblet cells and the presence of bacterial aggregates in the apical surfaces of intestinal epithelial cells. Edema was present in the submucosa. These results suggest that BALB/c mice could be used as an animal model for in vivo study of EAEC infection.

NQO1-Knockout Mice Are Highly Sensitive to Clostridium Difficile Toxin A-Induced Enteritis

  • Nam, Seung Taek;Hwang, Jung Hwan;Kim, Dae Hong;Lu, Li Fang;Hong, Ji;Zhang, Peng;Yoon, I Na;Hwang, Jae Sam;Chung, Hyo Kyun;Shong, Minho;Lee, Chul-Ho;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1446-1451
    • /
    • 2016
  • Clostridium difficile toxin A causes acute gut inflammation in animals and humans. It is known to downregulate the tight junctions between colonic epithelial cells, allowing luminal contents to access body tissues and trigger acute immune responses. However, it is not yet known whether this loss of the barrier function is a critical factor in the progression of toxin A-induced pseudomembranous colitis. We previously showed that NADH:quinone oxidoreductase 1 (NQO1) KO (knockout) mice spontaneously display weak gut inflammation and a marked loss of colonic epithelial tight junctions. Moreover, NQO1 KO mice exhibited highly increased inflammatory responses compared with NQO1 WT (wild-type) control mice when subjected to DSS-induced experimental colitis. Here, we tested whether toxin A could also trigger more severe inflammatory responses in NQO1 KO mice compared with NQO1 WT mice. Indeed, our results show that C. difficile toxin A-mediated enteritis is significantly enhanced in NQO1 KO mice compared with NQO1 WT mice. The levels of fluid secretion, villus disruption, and epithelial cell apoptosis were also higher in toxin A-treated NQO1 KO mice compared with WT mice. The previous and present results collectively show that NQO1 is involved in the formation of tight junctions in the small intestine, and that defects in NQO1 enhance C. difficile toxin A-induced acute inflammatory responses, presumably via the loss of epithelial cell tight junctions.

Tolaasin Forms Various Types of Ion Channels in Lipid Bilayer

  • Cho, Kwang-Hyun;Kim, Young-Kee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1998년도 학술발표회
    • /
    • pp.34-34
    • /
    • 1998
  • Tolaasin is a channel forming bacterial toxin produced by Pseudomonas tolaasii and causes a brown blotch disease on cultivated oyster mushrooms. When tolaasin molecules form channels in the membranes of mushroom cells, they destroy cellular membrane structure, known as 'colloid osmotic lysis'. In order to understand the molecular mechanisms forming membrane channels by tolaasin molecules, we have investigated the electrophysiological characteristics of tolaasin-induced channels in lipid bilayer.(omitted)

  • PDF

Effects of Various An ions on the Tolaasin-induced Hemolysis

  • Cho, Hyun-Sook;Cho, Kwang-Hyun;Kim, Young-Kee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.47-47
    • /
    • 1999
  • Tolaasin is a bacterial paptide toxin which is produced by Pseudomonas tolaasii. It forms pores in the cellular membranes, causing the brown blotch disease on the cultivated oyster mushroom. Previously, we showed that tolaasin-induced pore formation required the multimerization of tolaasin molecules. In order to measure the ionic effect on the tolaasin multimerization, the time course of tolaasin-induced hemolysis was measured in the presence of various cations and anions.(omitted)

  • PDF

Expression and Biochemical Characterization of the Periplasmic Domain of Bacterial Outer Membrane Porin TdeA

  • Kim, Seul-Ki;Yum, Soo-Hwan;Jo, Wol-Soon;Lee, Bok-Luel;Jeong, Min-Ho;Ha, Nam-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.845-851
    • /
    • 2008
  • TolC is an outer membrane porin protein and an essential component of drug efflux and type-I secretion systems in Gram-negative bacteria. TolC comprises a periplasmic $\alpha$-helical barrel domain and a membrane-embedded $\beta$-barrel domain. TdeA, a functional and structural homolog of TolC, is required for toxin and drug export in the pathogenic oral bacterium Actinobacillus actinomycetemcomitans. Here, we report the expression of the periplasmic domain of TdeA as a soluble protein by substitution of the membrane-embedded domain with short linkers, which enabled us to purify the protein in the absence of detergent. We confirmed the structural integrity of the TdeA periplasmic domain by size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy, which together showed that the periplasmic domain of the TolC protein family fold correctly on its own. We further demonstrated that the periplasmic domain of TdeA interacts with peptidoglycans of the bacterial cell wall, which supports the idea that completely folded TolC family proteins traverse the peptidoglycan layer to interact with inner membrane transporters.

느타리버섯 세균성갈색무늬병 병원균 Pseudomonas tolaasii의 특이적 DNA 클로닝 (Cloning of a DNA Fragment Specific to Pseudomonas tolaasii Causing Bacterial Brown Blotch Disease of Oyster Mushroom (Pleurotus ostreatus))

  • 이혁인;차재순
    • 한국식물병리학회지
    • /
    • 제14권2호
    • /
    • pp.177-183
    • /
    • 1998
  • A DNA fragment which is involved in tolassin production was cloned to obtain a molecular marker of Pseudomonas tolaasii, a casual agent of bacterial brown blotch disease of oyster mushroom (Pleurotus ostreatus). Tolaasin is a lipodepsipeptide toxin and known as a primary disease determinant of the P. tolaasii. It is responsible for formation of white line in agar when P. tolaasii were cultured against white line reacting organisms (WLROs). White line negative mutants (WL-) were generated by conjugation between rifampicin resistant strain of P. tolaasii and E. coli carrying suicidal plasmid pSUP2021 : : Tn5. The ability of tolaasin production of the WL- mutants was examined by hemolysis test, pathogenicity test, and high pressure liquid chromatography (HPLC) analysis of culture filtrate. All of the WL- mutants were lost the ability of tolaasin production (Tol-). Genomic library of the Tol- mutant was constructed in pLAFR3 and the cosmid clone containing Tn5 was selected. DNA fragment fro franking region of Tn5 was cloned from the plasmid and used as a probe in Southern blot. DNA-DNA hybridization with the probe to total DNA from group of bacteria ecologically similar to P. tolaasii including WLORs, fluorescent Pseudomonads isolated from oyster mushroom, P. agarici, P. gingeri, and some of other species of Psedomonas showed that some of the tested bacteria do not have any hybridized band and others have bands sowing RFLP. The cloned DNA fragment or its nucleotide sequence will be useful in detection and identification of the P. tolaasii.

  • PDF

Bacterial Community of Galchi-Baechu Kimchi Based on Culture-Dependent and - Independent Investigation and Selection of Starter Candidates

  • Kim, Tao;Heo, Sojeong;Na, Hong-Eun;Lee, Gawon;Kim, Jong-Hoon;Kwak, Mi-Sun;Sung, Moon-Hee;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.341-347
    • /
    • 2022
  • In this study, the bacterial community of galchi-baechu kimchi was determined using culture-based and culture-independent techniques (next generation sequencing:NGS), and showed discrepancies between results. Weissella koreensis and Pediococcus inopinatus were the dominant species according to the NGS results, while Bacillus species and P. inopinatus were dominant in the culture-dependent analysis. To identify safe starter candidates, sixty-five Bacillus strains isolated from galchi-baechu kimchi using culture-dependent methods were evaluated for their antibiotic resistance, presence of toxin genes, and hemolytic activity. Strains were then assessed for salt tolerance and protease and lipase activity. As a result, four strains-B. safensis GN5_10, B. subtilis GN5_19, B. velezensis GN5_25, and B. velezensis GT8-were selected as safe starter candidates for use in fermented foods.