DOI QR코드

DOI QR Code

Simulation Model of Dual-Species Biofilm Growth in Hydrodynamic Flow

유체 흐름 안에서 두 종의 생물막 성장 시뮬레이션 모델

  • 전원주 (국가수리과학연구소 융복합수리과학부) ;
  • 이상희 (국가수리과학연구소 융복합수리과학부)
  • Received : 2010.12.18
  • Accepted : 2011.03.21
  • Published : 2011.03.31

Abstract

In rivers and streams, biofilms are thin layers of greenish-brown slime attached to rocks, plants, and other surfaces. Biofilms play key roles in primary production and cycling of nutrients, water quality remediation, suspended sediment removal, and energy flow to higher trophic levels. In the present study, we developed a two-dimensional cellular automata model to simulate mixed biofilms of toxin-sensitive and toxin-producing species in hydrodynamic flow. The flow was generated by a stochastic process for uniform flow and by using the Navier-Stokes equation for non-uniform flow. Minimized local rules governing reproduction and mortality of the species were executed in the self-organizing processes to elucidate interactions between toxin-producing and toxin-sensitive species in competition over nutrients. We briefly discuss the morphology of the simulated biofilm under different flow conditions.

하천에서, 생물막은 녹갈색의 얇은 막의 형태로 돌, 식물, 그리고 기타 구조물의 표면에 부착되어 있다. 생물막은 주로 영양물의 순환, 수질정화, 바닥 침전물 제거, 그리고 먹이사슬내의 에너지 흐름에 매우 중요한 역할을 한다. 본 연구에서, 우리는 유체 흐름 안에서, 독소-생산 종과 독소-민감 종의 복합적 생물막을 전산 모사하는 모델을 개발하였다. 유체 흐름으로는 균일한 흐름과 불 균일한 흐름 두 가지를 고려하였다. 균일한 흐름은 확률 프로세스로 구현되었으며, 불 균일한 흐름은 나비어-스톡스 방정식으로 구현되었다. 모델에서, 독소-생산종과 독소-민감종 간의 상호작용을 고려하기 위해, 종 개체의 번식률과 사망률이 고려되어졌다. 우리는 서로 다른 두 유체 흐름 내에서 전산 모사 되어진 생물막의 구조적 형상에 대해서 간략히 논의 하였다.

Keywords

References

  1. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott H.M., "Microbial biofilms," Annual Review of Microbiology. vol. 49, pp. 711-745, 1995. https://doi.org/10.1146/annurev.mi.49.100195.003431
  2. Stoodley, P., Yang, S., Lappin-Scott, H., and Lewandowski, Z., "Relationship between mass transfer coefficient and liquid flow velocity in heterogeneous biofilms using microelectrodes and confocal microscopy," Biotechnology and Bioengineering. vol. 56, pp. 681-688, 1997. https://doi.org/10.1002/(SICI)1097-0290(19971220)56:6<681::AID-BIT11>3.0.CO;2-B
  3. Tolker-Nielsen, T. and Molin, S., "Spatial organization of microbial biofilm communities," Microbial Ecology. vol. 40, pp. 75-84, 2000.
  4. Ames, W.F., Numerical methods for partial differential equation, 2nd ed, London: Thomas Nelson and Sons, 1977.
  5. Shuler, M.L., Leung, S.K., and Dick, C.C., "A mathematical model for the growth of a single bacterial cell," Annals of the New York Academy of Sciences. vol. 326, pp. 35-55, 1979. https://doi.org/10.1111/j.1749-6632.1979.tb14150.x
  6. Bryers, J.D. and Characklis, W.G., "Processes governing primary biofilm formation," Biotechnol. Bioeng. 24, pp. 2451-2476, 1982. https://doi.org/10.1002/bit.260241111
  7. Characklis, W.G., Biofilm development: a process analysis. In Microbial Adhesion and Aggregation, (ed. K.C. Marshall), pp. 137-158, Springer, Berlin, 1984.
  8. Gjaltema, A., Arts, P.A.M., van Loosdrecht, M.C.M., Kuenen, J.G., and Heijnen, J.J., "Heterogeneity of biofilms in rotating annular reactor: occurrence, structure, and consequences," Biotechnology and Bioengineering, vol. 44, pp. 194-204, 1994. https://doi.org/10.1002/bit.260440208
  9. Wimpenny, J.W.T. and Colasanti, R., "A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models," FEMS Microbiology Ecology. vol. 22, pp. 1-16, 1997. https://doi.org/10.1111/j.1574-6941.1997.tb00351.x
  10. Hermanowicz and S. W., "A simple 2D biofilm model yields a variety of morphological features," Mathematical Biosciences. vol. 169, pp. 1-14, 2001. https://doi.org/10.1016/S0025-5564(00)00049-3
  11. Noguera, D.R., Okabe and S., and Picioreanu, C., "Biofilm modeling: Present status and future directions," Water Science and Technology. vol. 39, pp. 273-278, 1999.
  12. Noguera, D.R., Pizarro, G., Stahl, D.A., and Rittmann, B.E., "Simulation of multispecies biofilm development in three dimensions," Water Science and Technology. vol. 39, pp. 123-130, 1999.
  13. Eberl, H.J., Picioreanu, C., Heijnen, J.J., and Loosdrecht, M.C.M., "A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms," Chemical Engineering Science. Vol. 55, pp. 6209-6222, 2000. https://doi.org/10.1016/S0009-2509(00)00169-X
  14. Eberl, H.J., Parker, D.F., and Loosdrecht, M.C.M., "A new deterministic spatio-temporal continuum model for biofilm development," Journal of Theoretical Medicine. Vol. 3, pp. 161-176, 2001. https://doi.org/10.1080/10273660108833072
  15. Christensen, F.R., Kristensen, G.H., and Jansen, J.L.C., "Biofilm structure an important and neglected parameter in wastewater treatment," Water Science and Technology, Vol. 21, pp. 805-814, 1989.
  16. Zhang, T.C. and Bishop, P.L., "Evaluation of tortuosity factors and effective diffusivities in biofilms," Water Research, vol. 28, pp. 2279-2287, 1994. https://doi.org/10.1016/0043-1354(94)90043-4
  17. Zhang, T.C. and Bishop, P.L., "Density, porosity and pore structure of biofilms," Water Research, vol. 28, pp. 2267-2277, 1994. https://doi.org/10.1016/0043-1354(94)90042-6
  18. Zahid, W. M. and Ganczarczyk. J. J., "Suspended solids in biological filter effluencts," Water Research, vol. 24, pp. 215-220, 1990. https://doi.org/10.1016/0043-1354(90)90105-F
  19. Chan, A.T., Andersen, R.J., Le Blanc, M.J., and Harrison, P.J., "Algal plating as a tool for investigating allelopathy among marine microalgae," Marine Biology, vol. 59, pp. 7-13, 1980. https://doi.org/10.1007/BF00396977
  20. Maestrini, S.Y., and Bonin, D.T., "Allelopathic relationships between phytoplankton species," Canadian Bulletin of Fisheries and Aquatic Sciences, vol. 210, pp. 323-338, 1981.
  21. Leslie A.W. and Stephen O.D., "Weed and crop allelopathy," Critical Reviews in Plant Sciences, vol. 22, pp. 367-389, 2003. https://doi.org/10.1080/713610861