• Title/Summary/Keyword: bacterial spot disease

Search Result 76, Processing Time 0.022 seconds

Development of Control Method for Strawberry Bacterial Angular Spot Disease (Xanthomonas fragariae) (딸기 세균모무늬병(Xanthomonas fragariae)의 방제를 위한 약제 선발)

  • Kim, Da-Ran;Gang, Geun-Hye;Cho, Hyun ji;Myung, Inn-Shik;Yoon, Hae-Suk;Kwak, Youn-Sig
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2015
  • In Korea, Strawberry bacterial angular leaf spot disease was first reported in 2010. The disease of strawberry caused serious problem for strawberry producers and export. To field test, we applied the bactericides in June and October as nursery stage and cultivation stage, respectively. In nursery stage with high temperature condition, Oxolinic acid (97.2%) showed significant control effect. In cultivation stage with low temperature condition is soil sterilization and soil non- sterilization the control effect. In cultivation stage in soil sterilization stage Validamycin (93.3%) showed reliable control effect against the disease. Also, soil non-sterilization stage with low control effect of Validamycin (80%) showed control effect the lower than a soil sterilization stage.

Determination of Economic Control Thresholds for Bacterial Spot on Red Pepper Caused by Xanthomonas campestris pv. vesicatoria (고추 세균점무늬병 발생에 따른 수량 변화와 경제적 방제수준 설정)

  • Kim, Ju-Hee;Cheong, Seong-Soo;Lee, Ki-Kwon;Yim, Ju-Rak;Lee, Wang-Hyu
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.89-93
    • /
    • 2015
  • This study was carried out to develop the economic thresholds for the control of bacterial spot of red pepper. The correlation between diseased leaf rate and yield in field was Y=-0.724X+281.58, $R^2=0.78$, $r=-0.88^{**}$. The correlation between diseased leaf rate and yield loss in field was Y=0.813X+15.95, $R^2=0.78$, $r=0.88^*$.We found that control thresholds was below 30.3% diseased leaves rate per plant in field. The economic control thresholds for bacterial spot of red pepper was below 16.3%.

Two Pathogenic Groups in Acidovorax valerianellae Causing Bacterial Black Spot on the Various Crop Plants (다양한 작물에서 세균검은점무늬병을 일으키는 Acidovorax valerianellae의 병원성이 다른 2그룹)

  • Kim, Hye-Seong;Kim, Young-Tak;Park, Kyoung-Soo;Lee, Ji-Hye;Lee, Hyok-In;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.314-321
    • /
    • 2017
  • Acidovorax valerianellae had been reported a causal agent of bacterial black spot disease on corn salad in France, 2003 and on watermelon in Korea 2011. In this study, difference in host specificity between 2 groups, corn salad strains and watermelon strains, of Acidovorax valerianellae was recognized and compared. In the pathogenicity test, all 5 watermelon strains showed pathogenicity on the 6 Cucurbitaceae plants but not on corn salad, whereas 4 corn salad strains showed pathogenicity only on the corn salad. Utilization of Biolog substrates was different between watermelon strains and corn salad strains on 4 substrates, Malonic Acid, ${\alpha}-Hydroxybutyric$ Acid, ${\alpha}-Keto$ Butyric Acid, and Glycyl-L Glutamic Acid. The phylogenetic tree built with the 16S rDNA sequences showed that all of A. valerianellae stains was grouped into 1 clade separating from the other species of Acidovorax genus. Within A. valerianellae clade, watermelon strains and corn salad strains were separated into 2 sub-groups. REP-PCR analysis also separated the two groups. Host specificity, substrate utilization, and some genetic characteristics suggested that there are two pathogenic groups, watermelon group and corn salad group in A. valerianellae.

Incidence of Bacterial Brown Spot of Phalenopsis Orchids Caused by Acidovorax avenae subsp. cattleyae (Acidovorax avenae subsp. cattleyae에 의한 팔레놉시스 세균성갈색점무늬병의 발생)

  • Han, Kyung-Sook;Lee, Seung-Don;Park, Jong-Han;Han, You-Kyoung;Kim, Dae-Hyun;Lee, Jung-Sup
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.183-186
    • /
    • 2009
  • Leaf spot symptoms were observed in a commercial Palenopsis cultivated fields. Circular-elliptical watersoaked spots surrounded by a light green or yellow halo and turned to black when it was severe infection or blacken with gathered symptoms. These spots were finally enlarged to form of larger areas. Under the favorable conditions of temperature and moisture, the infection extended rapidly and dispersed to the crown and sometimes the infected plant became dead. A bacterial organism, isolated from the advancing margins of the lesions, was tested to characterize causing bacterium based on pathogenicity. The biochemical and physiological tests of that bacterium identified that as an Acidovorax avenae subsp. cattleyae. Therefore, we suggested to call that the new Phalaenopsis disease was bacterial brown spot caused by A.avenae subsp. cattleyae in Korea.

Detection of Xanthomonas axonopodis pv. citri on Satsuma Mandarin Orange Fruits Using Phage Technique in Korea

  • Myung, Inn-Shik;Hyun, Jae-Wook;Cho, Weon-Dae
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.314-317
    • /
    • 2006
  • A phage technique for detection of Xanthomonas axonopodis pv. citri, a causal bacterium of canker on Sastuma mandarin fruits was developed. Phage and ELISA techniques were compared for their sensitivity for detection of Xanthomonas axonopodis pv. citri on orange fruits. Both of techniques revealed a similar efficiency for the bacterial detection; the pathogenic bacteria were observed in pellet from the fruits with over one canker spot with below 2 mm in diameter. In field assays, the increase of phage population(120%) on surface of the fruits related to the disease development one month later indicated that the bacterial pathogens inhabit on the surface. The procedure will be effectively used for detection of only living bacterial pathogen on fruit surfaces of Satsuma mandarin and for the disease forecasting.

Resistance to Two Leaf Spot Diseases of Pepper Genetic Resources Introduced from Mexico and Nepal (멕시코와 네팔도입 고추 유전자원의 두 가지 점무늬병에 대한 저항성)

  • Jo, Eun-Hyeong;Kim, Jeong-Hoon;Jun, Su-Kyung;Lee, Ji-Seon;Kim, Byung-Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.23
    • /
    • pp.43-51
    • /
    • 2005
  • Pepper genetic resources consisting of introductions from Mexico and Nepal and susceptible and resistant controls were tested for resistance to gray leaf spot and to bacterial spot by serially inoculating the two disease pathogens, Stemphylium spp. first and Xanthomonas campestris pv. vesicatoria next, with application of fungicide after evaluation of resistance to gray leaf spot first. KC866, KC872, KC902, KC905 were resistant to gray leaf spot in addition to known resistance sources, KC43, KC47, KC220, KC319, KC320, KC380. KC897 was on the top of the resistance sources list, even better than KC177(163192), and was followed by KC889, KC896, KC898, all of which were introductions from Nepal.

  • PDF

Epidemiology and Control of Strawberry Bacterial Angular Leaf Spot Disease Caused by Xanthomonas fragariae

  • Kim, Da-Ran;Gang, Gun-hye;Jeon, Chang-Wook;Kang, Nam Jun;Lee, Sang-woo;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.290-299
    • /
    • 2016
  • Strawberry bacterial angular leaf spot (ALS) disease, caused by Xanthomonas fragariae has become increasingly problematic in the strawberry agro-industry. ALS causes small angular water-soaked lesions to develop on the abaxial leaf surface. Studies reported optimum temperature conditions for X. fragariae are $20^{\circ}C$ and the pathogen suffers mortality above $32^{\circ}C$. However, at the nursery stage, disease symptoms have been observed under high temperature conditions. In the present study, results showed X. fragariae transmission was via infected maternal plants, precipitation, and sprinkler irrigation systems. Systemic infections were detected using X. fragariae specific primers 245A/B and 295A/B, where 300-bp and 615-bp were respectively amplified. During the nursery stage (from May to August), the pathogen was PCR detected only in maternal plants, but not in soil or irrigation water through the nursery stage. During the cultivation period, from September to March, the pathogen was detected in maternal plants, progeny, and soil, but not in water. Additionally, un-infected plants, when planted with infected plants were positive for X. fragariae via PCR at the late cultivation stage. Chemical control for X. fragariae with oxolinic acid showed 87% control effects against the disease during the nursery period, in contrast to validamycin-A, which exhibited increased efficacy against the disease during the cultivation stage (control effect 95%). To our knowledge, this is the first epidemiological study of X. fragariae in Korean strawberry fields.

Multiplex PCR Assay for the Simultaneous Detection of Major Pathogenic Bacteria in Soybean (콩에 발생하는 주요 병원세균의 동시검출을 위한 다중 PCR 방법)

  • Lee, Yeong-Hoon;Kim, Nam-Goo;Yoon, Young-Nam;Lim, Seung-Taek;Kim, Hyun-Tae;Yun, Hong-Tae;Baek, In-Youl;Lee, Young-Kee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.142-148
    • /
    • 2013
  • Bacterial diseases in soybean are bacterial pustule by Xanthomonas axonopodis pv. glycines, wildfire by Pseudomonas syringae pv. tabaci, bacterial blight by Pseudomonas savastanoi pv. glycines and bacterial brown spot by Pseudomonas syringae pv. syringae in Korea. It is difficult to identify each disease by early symptoms in fields, because the initial symptoms of these diseases are very similar to each other. In this study, we developed multiplex PCR detection method for rapid and accurate diagnosis of bacterial diseases. The glycinecin A of X. axonopodis pv. glycines, the tabtoxin of P. syringae pv. tabaci, the coronatine of P. savastanoi pv. glycines and the syringopeptin of P. syringae pv. syringae have been reported previously. These bacteriocin or phytotoxin producing genes were targeted to design the specific diagnostic primers. The primer pairs for diagnosis of each bacterial diseases were selected without nonspecific reactions. The studies on simultaneous diagnosis method were also conducted with primarily selected 21 primers. As a result, we selected PCR primer sets for multiplex PCR. Sizes of the amplified PCR products using the multiplex PCR primer set consist of 280, 355, 563 and 815 bp, respectively. This multiplex PCR method provides a efficient, sensitive and rapid tool for the diagnosis of the bacterial diseases in soybean.

A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact

  • Kim, Gwang Hoon;Moon, Kyoung-Hyoun;Kim, Je-Yoon;Shim, Junbo;Klochkova, Tatyana A.
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.249-265
    • /
    • 2014
  • As with land crops, cultivated algae are affected by various diseases ranging from large outbreaks of a disease to chronic epiphytes, which may downgrade the value of the final product. The recent development of intensive and dense mariculture practices has enabled some new diseases to spread much faster than before. A new disease is reported almost every year, and the impact of diseases is expected to increase with environmental change, such as global warming. We observed the incidence of diseases in two Pyropia sea farms in Korea from 2011 to 2014, and estimated the economic loss caused by each disease. Serious damage is caused by the oomycete pathogens, Pythium porphyrae and Olpidiopsis spp., which decreased the productivity of the Pyropia sea farms. In Seocheon sea farms, an outbreak of Olpidiopsis spp. disease resulted in approximately US $1.6 million in loss, representing approximately 24.5% of total sales during the 2012-2013 season. The damage caused by green-spot disease was almost as serious as oomycete diseases. An outbreak of green-spot disease in the Seocheon sea farms resulted in approximately US $1.1 million in loss, representing 10.7% of total sales in the 2013-2014 season in this area. However, the causative agent of green-spot disease is still not confirmed. "Diatom felt" is regarded as a minor nuisance that does not cause serious damage in Pyropia; however, our case study showed that the economic loss caused by "diatom felt" might be as serious as that of oomycete diseases. Bacteria and cyanobacteria are indigenous members of epiphytic microbial community on Pyropia blades, but can become opportunistic pathogens under suitable environmental conditions, especially when Pyropia suffers from other diseases. A regular acid wash of the Pyropia cultivation nets is the most common treatment for all of the above mentioned diseases, and represents approximately 30% of the total cost in Pyropia sea farming. However, the acid wash is ineffective for some diseases, especially for Olpidiopsis and bacterial diseases.