• 제목/요약/키워드: bacterial soft rot

검색결과 104건 처리시간 0.027초

CA 저장이 아스파라가스의 품질에 미치는 영향 (Effect of Controlled Atmosphere Storage on Quality of Harvested Asparagus)

  • 이영춘
    • 한국식품과학회지
    • /
    • 제13권1호
    • /
    • pp.25-29
    • /
    • 1981
  • 생아스파라가스의 저장기간을 연장하기 위하여, 아스파라가스(Viking variety)를 정상대기 저장과 C.A. 저장을 하였다. 이때, 밑부분을 물에 담근것과 물에 담그지 않은 것으로 나누어 처리하였다. CA저장은 아스파라가스의 경우 박테리아에 의한 무름병이 발생하는 것을 현저하게 감소시켰으며, 밑부분을 물에 담그어 CA저장을 한결과 무름병 없이 3주일이나 저장할 수 있었다. 섬유질의 분석과 인스트론(Instron)을 이용하여 저장한 아스파라가스의 조직변화를 관찰하였는바, 저장기간이 늘어남에 따라 차츰 질겨지는 것을 볼 수 있었다. 아스파라가스의 섬유질함량은 CA저장에 의하여 그 증가폭이 훨씬 둔화되었고, 밑 부분을 담그어 CA저장을 한 경우 섬유질이 양은 줄어드는 것으로 나타났다. CA 저장에 의한 경우 정상 대기 저장에 비하여 아스파라가스 중의 엽록소 파괴는 훨씬 적게 나타났으며, Reflectance color value와 엽록소 양과는 서로 유의성 있는 상관관계를 나타내고 있다. 저장한 아스파라가스의 품질을 변화시키는 여러 가지 요인을 고려할 때 밑부분을 물에 담그어 CA저장을 하는 것이 아스파라가스의 품질을 3주일 이상 유지시켜 주는 가장 좋은 방법이라 할 수 있겠다.

  • PDF

Isolation and Characterization of Oligotrophic Bacteria Possessing Induced Systemic Disease Resistance against Plant Pathogens

  • Han, Song-Hee;Kang, Beom-Ryong;Lee, Jang-Hoon;Kim, Hyun-Jung;Park, Ju-Yeon;Kim, Jeong-Jun;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.68-74
    • /
    • 2012
  • Biocontrol microbes have mainly been screened among large collections of microorganisms $via.$ nutrient-rich $in$ $vitro$ assays to identify novel and effective isolates. However, thus far, isolates from only a few genera, mainly spore-forming bacilli, have been commercially developed. In order to isolate field-effective biocontrol microbes, we screened for more than 200 oligotrophic bacterial strains, isolated from rhizospheres of various soil samples in Korea, which induced systemic resistance against the soft-rot disease caused by $Pectobacterium$ $carotovorum$ SCC1; we subsequently conducted in $planta$ bioassay screening. Two oligotrophic bacterial strains were selected for induced systemic disease resistance against the $Tobacco$ $Mosaic$ $Virus$ and the gray mold disease caused by $Botrytis$ $cinerea$. The oligotrophic bacterial strains were identified as $Pseudomonas$ $manteilii$ B001 and $Bacillus$ $cereus$ C003 by biochemical analysis and the phylogenetic analysis of the 16S rRNA sequence. These bacterial strains did not exhibit any antifungal activities against plant pathogenic fungi but evidenced several other beneficial biocontrol traits, including phosphate solubilization and gelatin utilization. Collectively, our results indicate that the isolated oligotrophic bacterial strains possessing induced systemic disease resistance could provide useful tools as effective biopesticides and might be successfully used as cost-effective and preventive biocontrol agents in the field.

대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인 (Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4))

  • 박형철;전현진;김민철;이신우;정우식
    • Journal of Plant Biotechnology
    • /
    • 제47권2호
    • /
    • pp.157-163
    • /
    • 2020
  • 급속한 산업화와 인구증가에 따른 심각한 환경과 식량문제는 인류의 생존을 위협하는 가장 중요한 현안문제로 대두되고 있다. 또한, 인구 증가에 따른 식량부족을 해결하기 위하여 농약과 화학비료의 무분별한 사용으로 인하여 농토는 산성화되어 황폐화가 되고 있고 먹이사슬 및 자연생태계의 파괴는 더 많은 농약의 사용을 필요하고 있다. 과다한 농약 사용으로 경제적인 부담의 가중과 잔류 농약으로 인한 소비자의 건강을 위협하고 있다. 또한, 증가된 화석연료의 사용은 공기중의 이산화탄소를 증가시켜 지구 온도의 상승을 초래하고 있으며, 결과적으로 기상이변, 지구온난화 및 사막화 등의 심각한 환경문제를 초래했다. 특히, 서늘한 기온에서 잘 자라는 배추, 무우, 감자 등의 고령지 농작물의 질적인 저하를 초래하여 피해가 증가하고 있지만, 최근들어 감자와 같은 알카리성 건강식품의 붐으로 수요가 증가되고 있다. 본 연구에서 환경스트레스에 관여하는 대두의 특이적인 칼모듈린, GmCaM-4 유전자를 감자에 과발현 시켜서 PR 유전자들의 발현이 지속적으로 유지되어 식물방어 기작이 활성화 되었음을 확인하였다. 또한, 그 형질전환 식물체는 초민감성 세포사멸 현상을 보였고, 무름병을 일으키는 병원균인 Erwinia carotovora subsp. Carotovora (Ecc)를 이용하여 GmCaM-4가 과발현된 감자에서 병 저항성이 증가하는 것을 확인 하였다. 최종적으로 지금까지 많이 연구되고 보고된 유전자원인 대두의 GmCaM-4 유전자를 활용하여 주요 식량자원인 감자에서 과발현 형질전환 식물체를 확보하여 다양한 병 저항성 증가를 통한 작물 생산성 향상에 매우 우수한 기술로 기대되는 바이다.

FOX hunting system을 이용한 배추 기능유전자 탐색 (Systematic approaches to identify functional genes using the FOX-hunting system in Chinese cabbage)

  • 이인호;정유진;박종인;노일섭;강권규
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.174-185
    • /
    • 2010
  • Full-length cDNAs are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. To elucidate the functions of a large population of Chinese cabbage (Brassica rapa) genes and to search efficiently for agriculturally useful genes, we have been taking advantage of the full-length cDNA Over-eXpresser (FOX) gene hunting system. With oligo dT column it purify the each mRNA from the flower organs, leaf and stem tissue. And about 120,000 cDNAs from the library were transformed into $\lambda$-pFLCIII-F vector. Of which 115,000 cDNAs from the library were transformed into T-DNA binary vector, pBigs for transformation study. We used normalized full-length cDNA and introduced each cDNA into Arabidopsis by in planta transformation. Full-length Chinese cabbage cDNAs were expressed independently under the CaMV 35S promoter in Arabidopsis. Selfed seeds were harvested from transgenic Arabidopsis. We had selected 2,500 transgenic plants by hygromycin antibiotic tolerant test, and obtained a number of transgenic mutants. Each transgenic Arabidopsis was investigated in morphological changes, fertility and leaf colour. As a result, 285 possible morphological mutants were identified. Introduced cDNA was isolated by PCR amplification of the genomic DNA from the transgenic mutants. Sequencing result and BLAST analysis showed that most of the introduced cDNA were complete cDNAs and functional genes. Also, we examined the effect of Bromelain on enhancing resistance to soft rot in transgenic Chinese cabbage 'Osome'. The bromelain gene identified from FOX hunting system was transformed into Chinese cabbage using Agrobacterium methods. Transformants were screened by PCR, then RT-PCR and real time PCR were performed to analyze gene expression of cysteine protease in the T1 and T2 generations. The anti-bacterial activity of bromelain was tested in Chinese cabbages infected with soft rot bacteria. The results showed that the over-expressed bromelain gene from pineapple conferred enhanced resistance to soft rot in Chinese cabbage.

Erwinia rhapontici가 기주식물 조직에서 생산한 Pectate Lyase의 특성 (Characterization of Pectate Lyase Produced by Erwinia rhapontici During Growth in Host Plant Tissue)

  • 최재을
    • 한국식물병리학회지
    • /
    • 제10권3호
    • /
    • pp.163-168
    • /
    • 1994
  • Erwinia rhapontici causes soft-rot disease in a number of plants such as rhubarb, onion, hyacinth and garlic. Pectate lyase (Pel) depolymerizes pectin and other polygalacturonates, which is though to play a role in bacterial invasion of plants. Pel activity was not detected in E. rhapontici cultured in a minimal salts medium containing glycerol, polygalacturonate, or citrus pectin as a carbon source. However, when sterilized potato tuber and Chinese cabbage slices were added to minimal salts polygalacturonate (0.5%) medium, E. rhapontici produced pectate lyase enzyme. Also Pel activity was consistently detected from macerated potato tubers, Chinese cabbage leaves, lettuce leaves and celery petioles tissue. Pel in the extract of macerated Chinese cabbage caused by E. rhapontici strain 1, resulted in electrolyte loss, tissue maceration and cell death of potato tuber tissue. These results indicate that E. rhapontici produces pectate lyase only in the presence of non-diffusible plant components, and that this enzyme probably contributes to its pathogenicity.

  • PDF

탄소원과 배양온도가 식물 병원세균의 Pectate lyase 생산에 미치는 영향 (Effect of Carbon Sources and Culture Temperature on Pectate Lyase Production in Phytopathogenic Bacteria)

  • 한광섭;최재을
    • 한국식물병리학회지
    • /
    • 제14권2호
    • /
    • pp.125-129
    • /
    • 1998
  • Phytopathogenic bacteria causing soft-rot many vegetables; extracellular enzymes produced by them, pectate lyase(Pel) is important pathogenicity facotrs which cause tissue maceration and cell death. Ten of seventeen plant pathogenic bacteria showed weak Pel activity, four of them showed low Pel activity and Erwinia acrotovora subsp. carotovora, E. chrysanthemi, Pseudomonas marginalis and Xanthomonas campestris pv. campestris showed high Pel activity in the polygalacturonate yeast extract agar (PAY) plate. High Pel activity of the four bacteria species produced the highest Pel activity when pectin or polygalacturonic acid (PGA) was added to minimal salts (MS) medium. Pel activity of the four bacterial species was the highest at 2$0^{\circ}C$ among different temperature conditions. The rate and amount of maceration of potato tuber tissue were highest at 2$0^{\circ}C$ in E. carotovora subsp. carotovora, E. chrysanthemi and P. marginalis, while those were the highest at $25^{\circ}C$ in X. campestris pv. campetris.

  • PDF

Genetic improvement of potato plants

  • Suharsono, Sony
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.12-12
    • /
    • 2017
  • Genetic improvement in potato can be carried out through several approaches, as sexual crosses, somatic hybridization, mutation and genetic engineering. Although the approach is different, but the goal is the same, to get a superior cultivar. Mutation and genetic engineering are very interesting methods for genetic improvement of potato plants. Mutation by gamma-ray irradiation have been performed to get some new potato cultivars which are more resistant to disease and have higher productivity. We have carried out a mutation of some potato cultivars and obtained some excellent clones to be potentially released as new superior cultivars. By the mutation method, we have released one potato cultivar for the French fries industry, and we registered one cultivar of potato for chips, and two cultivar for vegetable potatoes. Actually we are doing multi-location trial for three clones to be released as new cultivars. Through genetic engineering, several genes have been introduced into the potato plant, and we obtained several clones of transgenic potato plants. Transgenic potato plants containing FBPase gene encoding for fructose bisphosphatase, have a higher rate of photosynthesis and higher tuber productivity than non-transgenic plants. This result suggests that FBPase plays an important role in increasing the rate of photosynthesis and potato tuber productivity. Some transgenic potatoes containing the Hd3a gene are currently being evaluated for their productivity. Over expression of the Hd3a gene is expected to increase tuber productivity and induce flowering in potatoes. Transgenic potato plants containing MmPMA gene encoding for plasma membrane ATPse are more tolerant to low pH than non-transgenic plants, indicating that plasma membrane ATPase plays an important role in the potato plant tolerance to low pH stress. Transgenic potato plants containing c-lysozyme genes, are highly tolerant of bacterial wilt diseases caused by Ralstonia solanacearum and bacterial soft rot disease caused by Pectobacterium carotovorum. Expression of c-lyzozyme gene plays an important role in increasing the resistance of potato plants to bacterial diseases.

  • PDF

Screening the Antibacterial Activities of Streptomyces Extracts against Phytopathogens Xanthomonas oryzae pathovar oryzae, Xanthomonas campestris pathovar vesicatoria, and Pectobacterium carotovorum pathovar carotovorum

  • Kim, Seung-Hwan;Cheng, Jinhua;Yang, Seung Hwan;Suh, Joo-Won;Song, Eun-Sung;Kang, Lin-Woo;Kim, Jeong-Gu
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.253-258
    • /
    • 2015
  • Xanthomonas oryzae pv. oryzae (Xoo), X. campestris pv. vesicatoria (Xcv), and Pectobacterium carotovorum pv. carotovorum (Pcc) are the causative agents of bacterial blight in rice, bacterial spot in pepper, and bacterial soft rot in carrot and cabbage, respectively. To isolate novel microbial extracts with antimicrobial activities against these bacteria, approximately 5,300 different Streptomyces extracts were prepared and tested. Microbial cultures from various Streptomyces strains isolated from the Jeju Island, Baekam, Mankyoung river, Jiri mountain etc. in Korea were extracted into three different factions -secreted hydrophobic, secreted hydrophilic, and mycelia- using ethyl acetate, water, and methanol. Initially, 34, 29, and 10 extracts were selected as having antibacterial activities against Xoo, Xcv, and Pcc, respectively. Extracts 1169G4, 1172E9, and 1172E10 had the highest growth inhibition activities against both Xoo and Xcv, and extracts 1151H7 and 1152H7 showed the highest growth inhibition activities against Pcc.

2002년 농작물 병해 발생개황 (Review of Disease Incidence of Major Crops in 2002)

  • 김충회
    • 식물병연구
    • /
    • 제9권1호
    • /
    • pp.10-17
    • /
    • 2003
  • 2002년은 여러 가지로 기상이 특이한 해였다. 겨울철의 이상난동, 3-4월의 고온 및 한발, 그리고 6월, 7월초중순의 가뭄, 7월하순부터 8월한달 내내 지속된 강우, 저온, 일조부족 등 여러모로 작물환경에 불리한 환경이 조성된 해였다. 이러한 기상특성과 상관하여 금년은 일반적으로 저온, 일조부족, 다우조건을 좋아하는 병해의 발생이 많았으며 벼의 경우 세균성알마름병, 이삭누룩병의 발생이 증가한 반면 도열병 등 주요병해는 질소비료의 시용량이 감소함에 따라 발생이 감소하였다. 채소, 과수류, 서류 병해의 발생은 생육기의 기상조건에 따라 많은 편차가 있으나 다우조건과 관련이 깊은 역병 등 저온성 병해의 발생이 증가한 반면에 탄저병, 무름병 등의 발생은 뚜렷이 감소하는 경향을 보였다.

Activation of Defense Responses in Chinese Cabbage by a Nonhost Pathogen, Pseudomonas syringae pv. tomato

  • Park, Yong-Soon;Jeon, Myeong-Hoon;Lee, Sung-Hee;Moon, Jee-Sook;Cha, Jae-Soon;Kim, Hak-Yong;Cho, Tae-Ju
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.748-754
    • /
    • 2005
  • Pseudomonas syringae pv. tomato (Pst) causes a bacterial speck disease in tomato and Arabidopsis. In Chinese cabbage, in which host-pathogen interactions are not well understood, Pst does not cause disease but rather elicits a hypersensitive response. Pst induces localized cell death and $H_2O_2$ accumulation, a typical hypersensitive response, in infiltrated cabbage leaves. Pre-inoculation with Pst was found to induce resistance to Erwinia carotovora subsp. carotovora, a pathogen that causes soft rot disease in Chinese cabbage. An examination of the expression profiles of 12 previously identified Pst-inducible genes revealed that the majority of these genes were activated by salicylic acid or BTH; however, expressions of the genes encoding PR4 and a class IV chitinase were induced by ethephon, an ethylene-releasing compound, but not by salicylic acid, BTH, or methyl jasmonate. This implies that Pst activates both salicylate-dependent and salicylate-independent defense responses in Chinese cabbage.