• Title/Summary/Keyword: bacterial reduction

Search Result 494, Processing Time 0.024 seconds

The Effect of Polyphenols Isolated from Cynanchi wilfordii Radix with Anti-inflammatory, Antioxidant, and Anti-bacterial Activity

  • Jeong, Sunyoung;Lee, Sunwoo;Choi, Woo Jin;Sohn, Uy Dong;Kim, Wonyong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • Recently, Cynanchi wilfordii Radix has gained wide use in Asian countries as a functional food effective for relieving fatigue, osteoporosis, and constipation, particularly in menopausal disorders. However, its anti-inflammatory and anti-microbial activities have not been explored in detail to date. The anti-inflammatory, antioxidant, and anti-bacterial properties of the Cynanchi wilfordii Radix extracts obtained with water, methanol, ethanol, and acetone were compared. All 4 polyphenol-containing extracts exhibited anti-inflammatory and antioxidant effects. The ethanol extract was found to elicit the most potent reduction of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and cytokine (IL-$1{\beta}$, IL-6, IL-10, and TNF-${\alpha}$) levels, as well as inhibit the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner. The evaluation of antioxidant activity also revealed the ethanol extract to have the highest free radical scavenging activity, measured as $85.3{\pm}0.4%$, which is equivalent to 99.9% of the activity of ${\alpha}$ -tocopherol. In the assessment of anti-bacterial activity, only ethanol extract was found to inhibit the growth of the Bacillus species Bacillus cereus and Bacillus anthracis. These results show that polyphenols of Cynanchi wilfordii Radix have anti-inflammatory, antioxidant, and anti-bacterial properties that can be exploited and further improved for use as a supplementary functional food, in cosmetics, and for pharmaceutical purposes.

Inhibition Effect of Avirulent Pseudomonas solanacearum on the Multiplication of Virulent Isolate in Tobacco Plant (비병원성균주 전처리에 의한 담배세균성마름병균(Pseudomonas solanacearum)의 식물체내 침입 및 증식억제)

  • Lee Young Keun;Kim Jeong Hwa;Park Won Mok
    • Korean Journal Plant Pathology
    • /
    • v.2 no.2
    • /
    • pp.114-120
    • /
    • 1986
  • Significant reduction in disease severity of bacterial wilt (Pseudomonas solanacearum) on the susceptible tobacco cultivar BY 4 was observed until mid-July in a naturally infested field when bacterial suspensions of avirulent isolate were applied to tobacco root zones at one day before and fourty days after transplanting into the field. However, rapid increase in disease severity after mid-July resulted in the same severity $(70\%)$ as on cultivar BY 4 without the application of the avirulent bacterial suspension at the end of the season. Yield increase in cultivar BY 4 was $35\%$ due to the treatment, resulting in $10\%$ price increase. The suppression me chanism did not appear to be dependent upon the inhibition of the virulent bacterial multiplication by the avirulent bacteria in tobacco rhizosphere soil because of no significant difference in the density of the patho genic bacteria between treated and untreated plant root zones. However. penetration of the virulent bacteria into the root systems and their multiplication in tobacco stem were inhibited remarkably by preinoculation with avirulent one, suggesting that those are related to the suppression of disease incidence.

  • PDF

Altered Gene Expression and Intracellular Changes of the Viable But Nonculturable State in Ralstonia solanacearum by Copper Treatment

  • Um, Hae Young;Kong, Hyun Gi;Lee, Hyoung Ju;Choi, Hye Kyung;Park, Eun Jin;Kim, Sun Tae;Murugiyan, Senthilkumar;Chung, Eunsook;Kang, Kyu Young;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.374-385
    • /
    • 2013
  • Environmental stresses induce several plant pathogenic bacteria into a viable but nonculturable (VBNC) state, but the basis for VBNC is largely uncharacterized. We investigated the physiology and morphology of the copper-induced VBNC state in the plant pathogen Ralstonia solanacearum in liquid microcosm. Supplementation of $200{\mu}M$ copper sulfate to the liquid microcosm completely suppressed bacterial colony formation on culture media; however, LIVE/DEAD BacLight bacterial viability staining showed that the bacterial cells maintained viability, and that the viable cells contain higher level of DNA. Based on electron microscopic observations, the bacterial cells in the VBNC state were unchanged in size, but heavily aggregated and surrounded by an unknown extracellular material. Cellular ribosome contents, however, were less, resulting in a reduction of the total RNA in VBNC cells. Proteome comparison and reverse transcription PCR analysis showed that the Dps protein production was up-regulated at the transcriptional level and that 2 catalases/peroxidases were present at lower level in VBNC cells. Cell aggregation and elevated levels of Dps protein are typical oxidative stress responses. $H_2O_2$ levels also increased in VBNC cells, which could result if catalase/peroxidase levels are reduced. Some of phenotypic changes in VBNC cells of R. solanacearum could be an oxidative stress response due to $H_2O_2$ accumulation. This report is the first of the distinct phenotypic changes in cells of R. solanacearum in the VBNC state.

Effect of Administration of Garlic Extract and PGF2α on Hormonal Changes and Recovery in Endometritis Cows

  • Sarkar, P.;Kumar, H.;Rawat, M.;Varshney, V.P.;Goswami, T.K.;Yadav, M.C.;Srivastava, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.964-969
    • /
    • 2006
  • The efficacy of garlic extract and $PGF_2{\alpha}$ in the treatment of endometritis in cows was evaluated. A total of 26 parous cows affected with endometritis were randomly allocated into three groups. Group I (n = 10) animals were infused (IU) with 10 ml garlic extract mixed with 90 ml normal saline, three times at 12 h interval starting from the day of estrum, whereas the animals of Group II (n = 10) were treated with a single injection of $PGF_2{\alpha}$ (25 mg Lutalyse) on the $10^{th}$ to $12^{th}$ day after estrus, and group III (n = 6) remained as control. Cervico-vaginal mucus (CVM) was collected from each animal at pre- and post-treatment estrus and subjected to white side test, pH determination and total bacterial load. The clinical recovery of cows was assessed by negative white side test reaction, pH value and total bacterial count of CVM at subsequent estrus. The recovered animals were inseminated with frozen-thawed semen twice at 12 h intervals and pregnancy was confirmed at 45-60 days following insemination. A significant decline (p<0.05) in pH of CVM was observed in both the treatment groups at subsequent estrus. After treatment there was a significant (p<0.05) reduction in bacterial load, whereas, it was increased in control group. A total number of 65 isolates were identified in CVM samples comprising mostly of facultative anaerobic bacteria. Plasma $T_4$ and $T_3$ concentrations were increased in all the treated animals, whereas, a decline was observed in cortisol levels following treatment. The overall conception rate was 50% in treated groups as compared to nil pregnancy in the control.

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A.;Chauhan, P.S.;Anandham, R.;Han, Gwang-Hyun;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1577-1584
    • /
    • 2010
  • In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Exploring the Potentiality of Novel Rhizospheric Bacterial Strains against the Rice Blast Fungus Magnaporthe oryzae

  • Amruta, Narayanappa;Kumar, M.K. Prasanna;Puneeth, M.E.;Sarika, Gowdiperu;Kandikattu, Hemanth Kumar;Vishwanath, K.;Narayanaswamy, Sonnappa
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.126-138
    • /
    • 2018
  • Rice blast caused by Magnaporthe oryzae is a major disease. In the present study, we aimed to identify and evaluate the novel bacterial isolates from rice rhizosphere for biocontrol of M. oryzae pathogen. Sixty bacterial strains from the rice plant's rhizosphere were tested for their biocontrol activity against M. oryzae under in vitro and in vivo. Among them, B. amyloliquefaciens had significant high activity against the pathogen. The least disease severity and highest germination were recorded in seeds treated with B. amyloliquefaciens UASBR9 (0.96 and 98.00%) compared to untreated control (3.43 and 95.00%, respectively) under in vivo condition. These isolates had high activity of enzymes in relation to growth promoting activity upon challenge inoculation of the pathogen. The potential strains were identified based on 16S rRNA gene sequencing and dominance of these particular genes were associated in Bacillus strains. These strains were also confirmed for the presence of antimicrobial peptide biosynthetic genes viz., srfAA (surfactin), fenD (fengycin), spaS (subtilin), and ituC (iturin) related to secondary metabolite production (e.g., AMPs). Overall, the results suggested that application of potential bacterial strains like B. amyloliquefaciens UASBR9 not only helps in control of the biological suppression of one of the most devastating rice pathogens, M. grisea but also increases plant growth along with a reduction in application of toxic chemical pesticides.

Effects of Bacterial Leaf Blight Occurrence on Rice Yield and Grain Quality in Different Rice Growth Stage (벼 생육시기별 흰잎마름병 발병이 쌀 수량감소 및 미질에 미치는 영향)

  • Noh, Tae-Hwan;Lee, Du-Ku;Park, Jong-Chul;Shim, Hyeong-Kwon;Choi, Man-Yeong;Kang, Mi-Hyung;Kim, Jae-Duk
    • Research in Plant Disease
    • /
    • v.13 no.1
    • /
    • pp.20-23
    • /
    • 2007
  • We investigated the first symptom emerging date of rice bacterial leaf blight disease during four years from 2002 to 2005. The disease occurrence date was earlier 20$\sim$30 days in 2005 than that of 2002. The damage in different rice growth stage by the bacterial disease on rice yield and grain quality in southern part of Korea was examined. The disease decreased rice yield following by increased infection rates. Slight loss in rice yield and brown head rice rate were observed at below 10% level of infected leaf area, while over 25% infected leaf area caused the significant decrease in rice yield and brown head rice rate. More than 50% of the infected leaf area rate caused 29% yield reduction in case of infection at panicle formation stage and 18% of brown head rice rate. Cooked rice quality was also affected in the diseased rice by damage in palatability score and viscosity.

Gut Microbiota of Tenebrio molitor and Their Response to Environmental Change

  • Jung, Jaejoon;Heo, Aram;Park, Yong Woo;Kim, Ye Ji;Koh, Hyelim;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.888-897
    • /
    • 2014
  • A bacterial community analysis of the gut of Tenebrio molitor larvae was performed using pyrosequencing of the 16S rRNA gene. A predominance of genus Spiroplasma species in phylum Tenericutes was observed in the gut samples, but there was variation found in the community composition between T. molitor individuals. The gut bacteria community structure was not significantly affected by the presence of antibiotics or by the exposure of T. molitor larvae to a highly diverse soil bacteria community. A negative relationship was identified between bacterial diversity and ampicillin concentration; however, no negative relationship was identified with the addition of kanamycin. Ampicillin treatment resulted in a reduction in the bacterial community size, estimated using the 16S rRNA gene copy number. A detailed phylogenetic analysis indicated that the Spiroplasma-associated sequences originating from the T. molitor larvae were distinct from previously identified Spiroplasma type species, implying the presence of novel Spiroplasma species. Some Spiroplasma species are known to be insect pathogens; however, the T. molitor larvae did not experience any harmful effects arising from the presence of Spiroplasma species, indicating that Spiroplasma in the gut of T. molitor larvae do not act as a pathogen to the host. A comparison with the bacterial communities found in other insects (Apis and Solenopsis) showed that the Spiroplasma species found in this study were specific to T. molitor.

Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain

  • Yap, Polly Soo Xi;Krishnan, Thiba;Chan, Kok-Gan;Lim, Swee Hua Erin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1299-1306
    • /
    • 2015
  • This study aims to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of bacteria for this combination of essential oil and antibiotic showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oil. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.

Antagonistic Activity of Bacteria Isolated from Apple in Different Fruit Development Stages against Blue Mold Caused by Penicillium expansum

  • Lopez-Gonzalez, Rocio Crystabel;Juarez-Campusano, Yara Suhan;Rodriguez-Chavez, Jose Luis;Delgado-Lamas, Guillermo;Medrano, Sofia Maria Arvizu;Martinez-Peniche, Ramon Alvar;Pacheco-Aguilar, Juan Ramiro
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.24-35
    • /
    • 2021
  • Blue mold caused by Penicillium expansum is one of the most significant postharvest diseases of apples. Some microorganisms associated with the surface of ripening apples possess the ability to inhibit the growth of P. expansum. However, the existing literature about their colonization in the stages before ripening is not explored in depth. This study aims to characterize the antagonistic capacity of bacterial populations from five fruit development stages of 'Royal Gala' apples. The results have shown that the density of the bacterial populations decreases throughout the ripening stages of fruit (from 1.0 × 105 to 1.1 × 101 cfu/㎠). A total of 25 bacterial morphotypes (corresponding to five genera identified by 16S RNA) were differentiated in which Bacillus stood out as a predominant genus. In the in vitro antagonism tests, 10 Bacillus strains (40%) inhibited the mycelial growth of P. expansum from 30.1% to 60.1%, while in fruit bioassays, the same strains reduced the fruit rot ranging from 12% to 66%. Moreover, the bacterial strains with antagonistic activity increased in the ripening fruit stage. B. subtilis subsp. spiziennii M24 obtained the highest antagonistic activity (66.9% of rot reduction). The matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that bacteria with antagonistic activity produce anti-fungal lipopeptides from iturin and fengycin families.