• Title/Summary/Keyword: bacterial reduction

Search Result 486, Processing Time 0.027 seconds

Effect of Additives on the Fermentation Quality and Residual Mono- and Disaccharides Compositions of Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Shao, Tao;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1582-1588
    • /
    • 2005
  • This study aimed to evaluate the effects of silage additives on the fermentation qualities and residual mono- and disaccharides composition of silages. Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) were ensiled with glucose, sorbic acid and pre-fermented juice of epiphytic lactic acid bacteria (FJLB) treatments for 30 days. In both species grass silages, although the respective controls had higher contents of butyric acid (20.86, 33.45g $kg^{-1}$ DM) and ammonia-N/total nitrogen (100.07, 114.91 g $kg^{-1}$) as compared with other treated silages in forage oats and Italian ryegrass, the fermentation was clearly dominated by lactic acid bacteria. This was well indicated by the low pH value (4.27, 4.38), and high lactic acid/acetic acid (6.53, 5.58) and lactic acid content (61.67, 46.85 g $kg^{-1}$ DM). Glucose addition increased significantly (p<0.05) lactic acid/acetic acid, and significantly (p<0.05) decreased the values of pH and ammonia-N/total nitrogen, and the contents of butyric acid and volatile fatty acids as compared with control, however, there was a slightly but significantly (p<0.05) higher butyric acid and lower residual mono- and di-saccharides as compared with sorbic acid and FJLB additions. Sorbic acid addition showed the lowest ethanol, acetic acid and ammonia-N/total nitrogen, and highest contents of residual fructose, total mono- and di-saccharides and dry matter as well as high lactic acid/acetic acid and lactic acid content. FJLB addition had the lowest pH value and the highest lactic acid content, the most intensive lactic acid fermentation occurring in FJLB treated silages. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB additions depressed clostridia or other undesirable bacterial fermentation, thus this decreased the water-soluble carbohydrates loss and saved the fermentable substrate for lactic acid fermentation.

Fermentation Quality of Italian Ryegrass (Lolium multiflorum Lam.) Silages Treated with Encapsulated-glucose, Glucose, Sorbic Acid and Pre-fermented Juices

  • Shao, Tao;Zhanga, L.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1699-1704
    • /
    • 2007
  • This experiment was carried out to evaluate the effects of adding encapsulated-glucose, glucose, sorbic acid or prefermented juice of epiphytic lactic acid bacteria (FJLB) on the fermentation quality and residual mono- and disaccharide composition of Italian ryegrass (Lolium multiflorum Lam) silages. The additive treatments were as follows: (1) control (no addition), (2) encapsulated-glucose addition at 0.5% for glucose, (3) glucose addition at 1%, (4) sorbic acid addition at 0.1%, (5) FJLB addition at a theoretical application rate of $2.67{\times}10^5$ CFU (colony forming unit) $g^{-1}$, on a fresh weight basis of Italian ryegrass. Although control and encapsulated-glucose treatments had higher contents of butyric acid (33.45, 21.50 g $kg^{-1}$ DM) and ammonia-N/Total nitrogen (114.91, 87.01 g $kg^{-1}$) as compared with the other treated silages, the fermentation in all silages was clearly dominated by lactic acid. This was well indicated by the low pH (4.38-3.59), and high lactic acid/acetic acid (4.39-22.97) and lactic acid content (46.85-121.76 g $kg^{-1}$ DM). Encapsulated-0.5% glucose and glucose addition increased lactic acid/acetic acid, and significantly (p<0.05) decreased ammonia-N/total nitrogen, and the contents of butyric acid and total volatile fatty acids (VFAs) as compared with the control. However, there were higher butyric acid and lower residual mono-and di-saccharides on the two treatments as compared with sorbic acid and FJLB addition, and their utilization efficiency of water soluble carbohydrates (WSC) was lower than that of both sorbic acid and FJLB additions. Sorbic acid addition showed the lowest content of ethanol and ammonia-N/total nitrogen, and the highest content of residual fructose and total mono-and disaccharides as well as the higher lactic acid/acetic acid value. Sorbic acid addition decreased the loss of mono-and disaccharides, and inhibited the activity of clostridial and other undesirable bacteria, and greatly increased the utilization efficiency of fermentable substrates by epiphytic LAB. FJLB addition had the lowest pH value and the highest lactic acid content among all additive treatments, with the most intensive lactic acid fermentation occurring in FJLB treated silage. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB addition depressed clostridia or other undesirable bacterial fermentation which decreased the WSC loss and saved the fermentable substrate for lactic acid fermentation.

Physicochemical Properties and Antioxidative Activity of Lactic Acid Bacteria Fermented Rhodiola sachalinensis using Adsorption Process (흡착 공정을 활용한 홍경천(Rhodiola sachalinensis) 유산균 발효물의 이화학적 특성 및 항산화 활성)

  • Sung, Su-Kyung;Rhee, Young-Kyung;Cho, Chang-Won;Lee, Young-Chul;Kim, Young-Chan;Hong, Hee-Do
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.779-786
    • /
    • 2012
  • Rhodiola sachalinensis fermentates by lactic acid bacteria were prepared using the adsorption process, and were investigated for changes of the main compounds and anti-oxidative activities during the adsorption and fermentation process. While the R. sachalinensis extract (RSE), which did not go through the adsorption process, showed little change in pH during fermentation and a significant reduction in the number of lactic acid bacteria, the pre-preparatory adsorption process was found to be helpful for promoting fermentation and for maintenance of bacterial numbers. The contents of total phenolic compounds mostly decreased during the adsorption process, but showed an increasing tendency to rebound during the fermentation process. The contents of salidroside and p-tyrosol in the RSE were 1153.3 mg% and 185.0 mg% respectively, and they did not significantly change after treatment with acid clay or bentonite as adsorbents, which were 1093.0 and 190.5 mg% by acid clay, and 882.2 and 157.3 mg% by bentonite. When the extract was fermented after treatment with acid clay or bentonite, the salidroside contents were decreased by 282.7 and 505.0 mg% respectively, but the p-tyrosol contents were increased by 714.0 and 522.4 mg% respectively. Compared to the DPPH radical scavenging activity of the RSE (66.8%) at the conc. of 0.1%, that of the fermented RSE, which went through adsorption process with acid clay or bentonite, was significantly increased to 79.4 and 72.7% respectively at the same concentration (p<0.05). Though fermentation by lactic acid bacteria was suppressed in the RSE, the results suggested that the adsorption process may promote fermentation without any change in the content of major active compounds. It is expected that fermentation by lactic acid bacteria could improve the antioxidant activity and various associated functionalities of R. sachalinensis.

Fermentation Characteristics of Low Salted Kochujang Prepared with Mixture of Sub-materials (부원료를 혼합 첨가한 저식염 고추장의 발효 특성)

  • Kim, Dong-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.449-455
    • /
    • 2005
  • To reduce saft content of kochujang, various combinations of sub-materials such as ethanol mustard and chitosan were added to kochujang, and their effects on microbial characteristics, enzyme activities, and physicochemical characteristics of kochujang were investigated after 12 weeks of fermentation. Activities of ${\beta}$-amylase and pretense were low in ethanol-mustard-chitosan-added kochujang, whereas no significant difference was observed in ${\alpha$-amylase activity among all groups. Number of viable yeast cells decreased remarkably in mustard-added kochujang during late aging period, and anaerobic bacterial counts decreased in sub-material-added groups. Consistency of kochujang increased by addition of sub-materials, and oxidation-reduction potential was low in chitosan-added group. Mustard-chitosan-added kochujang showed lowest increase in total color difference(${\Dalta}E$) and decrease in water activity. PH of kochujang wns highest in mustard-chitosan-added kochujang, resulting in significantly increased titratable acidity. Addition of sub-material increased reducing sugar contents of kochujang, whereas ethanol production was significantly repressed in mustard-chitosan-added kochujang. Amino nitrogen content was Highest in mustard-chitosan-added kochujang during late aging period, whereas ammonia nitrogen content was lower in ethanol-mustard-added kochujang. Results of sensory evaluation indicated ethanol-mustard-added kochujang was more acceptable than other groups in taste and overall acceptability.

Vacuum Assisted Wound Closure Appliance and Continuous Irrigation on Infected Chronic Wound (감염된 만성창상에서 국소음압세척치료의 이용)

  • Jeong, Jin-Wook;Kim, Jun-Hyung;Jung, Yung-Jin;Park, Mu-Sik;Son, Dae-Gu;Han, Ki-Hwan
    • Archives of Plastic Surgery
    • /
    • v.37 no.3
    • /
    • pp.227-232
    • /
    • 2010
  • Purpose: Continuous irrigation method is an important step in managing wound infection. V.A.C. devices have been used in intractable wounds for reducing discharge, improving local blood flow, and promoting healthy granulation tissue. We expect synergistic effects of reduced infection and more satisfactory, accelerated wound healing when using both methods simultaneously. This study evaluated continuous irrigation combined with V.A.C. appliance for treatment of infected chronic wounds. Methods: We reviewed data from 17 patients with infected intractable chronic wounds. V.A.C. device (Group A) was used in 9 patients, and V.A.C. with antibiotics irrigation (Group B) was used in 8 patients. We placed Mepitel$^{(R)}$ on the surface of wound and placed an irrigation and aspiration tube on each side. A sponge was placed on the Mepitel$^{(R)}$ and covered with film dressing. The wound was irrigated continuously with mixed antibiotics solution at the speed of 200 cc/hr and aspirated through the wall suction at the pressure of -125 mmHg. V.A.C. applied time, wound culture and wound size were compared between the two groups. Results: No complication were seen in two groups. Compared with Group A, in the Group B, V.A.C. applied time was shortened from 32.7 days to 25.6 days and showed efficacy in the reduction rate of wound size. No statistical differences were shown in bacterial reversion. Conclusion: V.A.C. appliance with continuous irrigation is an effective new method of managing infected chronic wounds and useful to reduce treatment duration and decrease wound size. Moreover it could be applied more widely to infected wound.

Inhibition of Listeria monocytogenes by Low Concentrations of Ethanol (저농도의 Ethanol에 의한 Listeria monocytogenes의 증식억제)

  • 박찬성;김미림
    • Korean journal of food and cookery science
    • /
    • v.11 no.4
    • /
    • pp.379-385
    • /
    • 1995
  • The effect of low concentrations of ethanol (3-7%, v/v) in tryptic soy broth (TSB) as an antibacterial agent against Listeria monocytogenes was tested at -20, 5, 35, 45, 50 and 55$^{\circ}C$. Increasing concentrations of ethanol progressively inhibited initial growth of L. monocytogenes at 35$^{\circ}C$. Growth occured at 5% ethanol, but only after a prolonged lag period. The number of viable cells of L. monocytogenes declined during incubation at 7% ethanol. TSB containing 3-7% ethanol was inoculated with 10$\^$5/-10$\^$6/ cells/$m\ell$ or L. monocytogenes and incubated at low temperatures (5$^{\circ}C$, -20$^{\circ}C$). In the presence of 3% of ethanol at 5 or -20$^{\circ}C$, bacterial growth was inhibited more than 90% of control cells. TSB containing 3-7% ethanol was inoculated with 10$\^$6/-10$\^$7/ cells/$m\ell$ of L. monocytogenes and incubated at high temperatures (45$^{\circ}C$, 50$^{\circ}C$, 55$^{\circ}C$). Decrease in viability of the cells incubated at 45 or 50$^{\circ}C$ was slow and the survival of L. monocytogenes was not affected so much in the presence of 3% of ethanol. The viability of L. monocytogenes was decreased with increasing concentration of ethanol and temperature. Decimal reduction times (D-values) based on tryptic soy agar plates at 55$^{\circ}C$ were 20.1, 12.6, 7.4 and 4.2 min in 0, 3, 5 and 7% ethanol, respectively.

  • PDF

Changes in Water Quality and Bacterial Compositions in Culture Water of an Ozonated Flounder Farm (오존 처리한 넙치 양식장 사육수의 수질과 미생물 변동)

  • Park, Seongdeok;Kim, You Hee;Park, Jeonghwan;Kim, Pyong-Kih
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.90-97
    • /
    • 2018
  • This study assessed the effect of ozone to control pathogenic bacteria in inlet water flowing to flounder farms, establishing operational parameters of ozonation at seawater conditions. Hydraulic retention time in a reaction pipeline after ozonation was fixed at 3 minutes in a flow through system. Concentrations of total residual oxidant (TRO) by ozonation were measured according to different ozonation intensities. The oxidant reduction potential (ORP), which is indirect but enables real-time measurement, was measured in relation to TRO values. TRO values were $0.01{\pm}0.01mg\;L^{-1}$ at an ORP range of 320-410 mV, $0.07{\pm}0.02mg\;L^{-1}$ at 600 mV, and $0.16{\pm}0.03mg\;L^{-1}$ at 700 mV. A heterotrophic marine bacteria colony was reduced by 80.6-97.9%, showing the suppression effect of ozonation on total bacteria in inlet water. At an ORP range of 400-500 mV, colonies of heterotrophic marine bacteria, Vibrio spp., and gram negative bacteria were significantly reduced in outlet water from a culture tank with ongrowing flounder (230 g) at a stocking density of $8kg\;m^{-2}$. Especially, Vibrio spp. and gram negative bacteria were seldom found at 400-500 mV. The daily feeding rate was from over 0.7% to total body weight at 300-500 mV, showing better performance than that in the control. The pathogenic bacteria entering the flounder farm were effectively removed when the ORP range to 400 mV or less.

Endophytic bacterium Pseudomonas fluorescens strain EP103 was effective against Phytophthora capsici causing blight in chili pepper (식물근권에서 분리한 Pseudomonas fluorescens strain EP103에 의한 고추역병억제)

  • Kim, Tack-Soo;Dutta, Swarnalee;Lee, Se Won;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.422-428
    • /
    • 2014
  • Endophytic bacterial strains from root tissue of strawberry were screened for their efficacy in growth improvement and control of Phytophthora blight disease of chili pepper plant under greenhouse condition. Plants treated with the strain EP103, identified as Pseudomonas fluorescens, showed growth improvement in terms of fresh weight and root length compared to the untreated control and other endophytic strains. When challenged with Phytophthora capsici, there was significant reduction of disease in EP103 treated plants with an efficacy of 78.7%. There was no direct inhibition of the target pathogen by EP103 when tested under in vitro antibiosis assay. Analysis of differential expression of selected marker genes for induced systemic resistance (ISR) in plants treated with EP103 and challenged with P. capsici showed up-regulation of PR1 and PR10 pathogenesis-related (PR) proteins. PCR analysis showed that EP103 produced secondary metabolites such as pyoluteorin, pyrrolnitrin, hydrogen cyanide and orfamide A. This study indicated the potential of endophytic P. fluorescens strain EP103 as an efficient biocontrol agent against P. capsici in chili pepper plant.

Screening of Sterilized Ramen Soup by DEFT/APC Method and Its Quality Properties as Affected by Irradiation (DEFT/APC 측정에 의한 시판 분말수프의 살균처리여부 확인 및 감마선 처리에 따른 품질특성 평가)

  • Ahn, Jae-Jun;Kim, Kwang-Hoon;Park, Sung-Hyun;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.515-521
    • /
    • 2009
  • The DEFT (direct epifluorescent filter technique)/APC (aerobic plate count) test was utilized to screen powdered Ramen soup samples (RS-1, RS-2) whether or not they have been microbial-decontaminated. The initial microbial loads of commercially-packaged samples were log DEFT 6.46 (RS-1) and 7.05 (RS-2), but the viable bacterial counts were log APC 2.74 (RS-1) and 1.95 (RS-2), respectively; this finding showed that they have been already decontaminated by methods other than irradiation. The same samples were then subjected to gamma irradiation at 0, 5 and 10 kGy in order to evaluate the microbial and physicochemical changes during post-irradiation storage for 6 months under room conditions ($10{\pm}3^{\circ}C$). The DEFT count was constant in irradiated samples even at different doses, but APC decreased with dose increases; this implies that the log DEFT/APC increased in a linear fashion with dose. No coliforms, yeasts and molds were detected in any of the samples, whereas the initially detected aerobic bacteria ($5.49{\times}10^2CFU/g$) were inactivated by 5 kGy or more and no growth was observed during the subsequent storage period. The pH of RS-1 was reduced by irradiation (p<0.01), but increased (p<0.01) with increasing storage time. Irradiation induced a reduction in volatile basic nitrogen (VBN), whereas an increase in thiobarbituric acid (TBA) values was observed. The storage time proved more influential than irradiation up to 10 kGy in terms of changes in the VBN and Hunter’s color values of powdered Ramen soups.

Biological Control of Strawberry Gray Mold Caused by Botrytis cinerea Using Bacillus licheniformis N1 Formulation

  • Kim, Hyun-Ju;Lee, Soo-Hee;Kim, Choul-Sung;Lim, Eun-Kyung;Choi, Ki-Hyuck;Kong, Hyun-Gi;Kim, Dae-Wook;Lee, Seon-Woo;Moon, Byung-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.438-444
    • /
    • 2007
  • Bacillus licheniformis N1 is a biological control agent to control gray mold diseases caused by Botrytis cinerea. Various formulations of B. licheniformis N1 were generated and evaluated for the activity to control strawberry gray mold. The wettable powder type formulation N1E was selected in pot experiments with remarkable disease control activity on both strawberry leaves and flowers. The N1E formulation contained 400 g of com starch, 50 ml of olive oil, and 50 g of sucrose per a liter of bacterial fermentation culture. Optimum dilution of N1E to appropriately control the strawberry gray mold appeared to be 100-fold dilution in plastic house artificial infection experiments. The significant reduction of symptom development in the senescent leaves was apparent by the treatment of N1E at 100-fold dilution when N1E was applied before Bo. cinerea inoculation, but not after the inoculation. Both artificial infection experiments in a plastic house and natural infection experiments in the farm plastic house under production conditions revealed that the disease severity of gray mold on strawberry leaves and flowers was significantly reduced by N1E treatment. The disease control value of N1E on strawberry leaves was 81% under production conditions, as compared with the 61.5% conferred by a chemical fungicide, iprodione. This study suggests that our previously generated formulation of B. licheniformis N1 will be effective to control strawberry gray mold by its preventive activity.