• Title/Summary/Keyword: bacterial microbiota

Search Result 157, Processing Time 0.037 seconds

Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota

  • Unno, Tatsuya;Kim, Jungman;Guevarra, Robin B.;Nguyen, Son G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.431-438
    • /
    • 2015
  • Ever since the ban on antibiotic growth promoters (AGPs), the livestock death rate has increased owing to pathogenic bacterial infections. There is a need of developing AGP alternatives; however, the mechanisms by which AGP enhances livestock growth performance are not clearly understood. In this study, we fed 3-week-old swine for 9 weeks with and without AGPs containing chlortetracycline, sulfathiazole, and penicillin to investigate the effects of AGPs on swine gut microbiota. Microbial community analysis was done based on bacterial 16S rRNA genes using MiSeq. The use of AGP showed no growth promoting effect, but inhibited the growth of potential pathogens during the early growth stage. Our results showed the significant increase in species richness after the stabilization of gut microbiota during the post-weaning period (4-week-old). Moreover, the swine gut microbiota was divided into four clusters based on the distribution of operational taxonomic units, which was significantly correlated to the swine weight regardless of AGP treatments. Taxonomic abundance analysis indicated a negative correlation between host weight and the abundance of the family Prevotellaceae species, but showed positive correlation to the abundance of the family Spirochaetaceae, Clostridiaceae_1, and Peptostreptococcaeae species. Although no growth performance enhancement was observed, the use of AGP inhibited the potential pathogens in the early growth stage of swine. In addition, our results indicated the ecological succession of swine gut microbiota according to swine weight. Here, we present a characterization of swine gut microbiota with respect to the effects of AGPs on growth performance.

Isolation of Novel Strains of Lactobacillus gasseri EJL and Bifidobacterium breve JTL from Breast Milk and Infant Feces: A Longitudinal Study of a Mother-infant Pair

  • Lee, Heetae;Lee, Chong-Kil;Kim, Kyungjae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Human breast milk is a potential source of bacteria for the development of the intestinal microbiota of infants. Several species within the genera Lactobacillus and Bifidobacterium were demonstrated to shape the gut microbiota of infants. In this study, the bacterial diversity was investigated in the breast milk and feces of a mother-infant pair, and probiotic candidates were identified. Importantly, the novel L. gasseri EJL and B. breve JTL strains were isolated from breast milk and infant feces samples, respectively; their completed genome was resolved using de novo sequencing. In addition, the bacterial composition in the infant's feces at 1 week revealed the prevalence of Bifidobacterium and Streptococcus; a higher diversity was observed after 3 weeks. In particular, the abundance of Akkermansia was sharply increased at 7 weeks, further increasing thereafter, up to 15 weeks. Our results suggest that human breast milk and infant's feces are a source of probiotic candidates.

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran;Kim, Su-Hyeon;Lee, Su In;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.372-382
    • /
    • 2022
  • Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.

Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease

  • Eun Yeong Lim;Eun-Ji Song;Hee Soon Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1111-1118
    • /
    • 2023
  • As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.

Comparison of the fecal microbiota with high- and low performance race horses

  • Taemook Park;Jungho Yoon;YoungMin Yun;Tatsuya Unno
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.425-437
    • /
    • 2024
  • Exercise plays an important role in regulating energy homeostasis, which affects the diversity of the intestinal microbial community in humans and animals. To the best of the authors' knowledge, few studies have reported the associations between horse gut microbiota along with their predicted metabolic activities and the athletic ability of Jeju horses and Thoroughbreds living in Korea. This study was conducted to investigate the association between the gut microbiota and athletic performance in horses. This study sequenced the V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from racehorse fecal samples and compared the fecal microbiota between high- and low-performance Jeju horses and Thoroughbreds. Forty-nine fecal samples were divided into four groups: high-performance Jeju horses (HJ, n = 13), low-performance Jeju horses (LJ, n = 17), high-performance Thoroughbreds (HT, n = 9), and low-performance Thoroughbreds (LT, n = 10). The high-performance horse groups had a higher diversity of the bacterial community than the low-performance horse groups. Two common functional metabolic activities of the hindgut microbiota (i.e., tryptophan and succinate syntheses) were observed between the low-performance horse groups, indicating dysbiosis of gut microbiota and fatigue from exercise. On the other hand, high-performance horse groups showed enriched production of polyamines, butyrate, and vitamin K. The racing performance may be associated with the composition of the intestinal microbiota of Jeju horses and Thoroughbreds in Korea.

Analysis of Microbial Composition Associated with Freshwater and Seawater

  • Lee, So-Yeon;Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.150-159
    • /
    • 2016
  • Knowledge of the distribution and biodiversity of environmental bacteria and the ecosystem that influences them is crucial for predicting an ecosystem. However, bacterial culture methods can only analyze approximately 0.1% of the existing microorganisms, those that are readily cultured under laboratory conditions. By contrast, next-generation sequencing (NGS) has generally been known to obtain more diverse profiling of bacterial composition. We compared the bacterial communities using both a culture-dependent (MALDI-TOF) and culture-independent (NGS) methods. Environmental specimens were obtained from both freshwater and seawater. Water samples were also analyzed by both pyrosequencing and MiSeq sequencing, in order to select one NGS platform which could analyze comparatively more diverse microbiota. Bacterial distribution analyzed with MALDI-TOF showed no difference between the microbiota of freshwater and seawater, whereas the results analyzed with NGS distinguished between the two. The diversity indexes of MiSeq sequencing were higher than for Pyrosequencing. This indicated that MiSeq sequencing is capable of analyzing a comparatively wider diversity of bacteria. The genus of Flavobacterium and Planktophila were identified as being unique to freshwater, whereas EU801223 and OM43 were found in the seawater. Difference between the bacterial composition of the freshwater and seawater environments was identified by MiSeq sequencing analysis.

Fecal microbiota analysis of obese dogs with underlying diseases: a pilot study

  • Park, Hyung Jin;Lee, Sang Eun;Kim, Hyeun Bum;Kim, Jae Hoon;Seo, Kyoung Won;Song, Kun Ho
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.205-208
    • /
    • 2015
  • Ten dogs were enrolled in this study: two healthy dogs, two obese dogs without other medical issues and six obese dogs with underlying diseases including pemphigus, chronic active hepatitis, hyperadrenocorticism, narcolepsy, otitis media and heartworm infection. Pyrosequencing of the 16S rRNA gene to explore the gut bacterial diversity revealed that distal gut bacterial communities of samples from patients with pemphigus, otitis media and narcolepsy consisted primarily of Firmicutes, while the major phylum of the distal gut bacterial communities in patients with chronic active hepatitis and hyperadrenocorticism was Fusobacteria. Proteobacteria were the dominant phylum in heartworm infected obese patients.

Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis

  • Wang, Jin;Fan, Huan;Han, Ye;Zhao, Jinzhao;Zhou, Zhijiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.100-110
    • /
    • 2017
  • Objective: The gastrointestinal tract of sheep contain complex microbial communities that influence numerous aspects of the sheep's health and development. The objective of this study was to analyze the composition and diversity of the microbiota in the gastrointestinal tract sections (rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, colon, and rectum) of sheep. Methods: This analysis was performed by 454 pyrosequencing using the V3-V6 region of the 16S rRNA genes. Samples were collected from five healthy, small tailed Han sheep aged 10 months, obtained at market. The bacterial composition of sheep gastrointestinal microbiota was investigated at the phylum, class, order, family, genus, and species levels. Results: The dominant bacterial phyla in the entire gastrointestinal sections were Firmicutes, Bacteroidetes, and Proteobacteria. In the stomach, the three most dominant genera in the sheep were Prevotella, unclassified Lachnospiraceae, and Butyrivibrio. In the small intestine, the three most dominant genera in the sheep were Escherichia, unclassified Lachnospiraceae, and Ruminococcus. In the large intestine, the three most dominant genera in the sheep were Ruminococcus, unclassified Ruminococcaceae, and Prevotella. R. flavefaciens, B. fibrisolvens, and S. ruminantium were three most dominant species in the sheep gastrointestinal tract. Principal Coordinates Analysis showed that the microbial communities from each gastrointestinal section could be separated into three groups according to similarity of community composition: stomach (rumen, reticulum, omasum, and abomasum), small intestine (duodenum, jejunum, and ileum), and large intestine (cecum, colon, and rectum). Conclusion: This is the first study to characterize the entire gastrointestinal microbiota in sheep by use of 16S rRNA gene amplicon pyrosequencing, expanding our knowledge of the gastrointestinal bacterial community of sheep.

In vitro fermentation profiles of different soybean oligosaccharides and their effects on skatole production and cecal microbiota of broilers

  • Zhu, Xin;Xu, Miao;Liu, Haiying;Yang, Guiqin
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1195-1204
    • /
    • 2022
  • Objective: The objective of this study was to investigate the in vitro fermentation profiles of different soybean oligosaccharides (SBOs) and their effects on skatole production and cecal microbiota of broilers. Methods: Five SBOs with varying main component contents were fermented using an in vitro batch incubation inoculated with broiler cecal microbiota. Gas production was recorded automatically, skatole, indole and short-chain fatty acids (SCFAs) were determined using high-performance liquid chromatography, and microbial changes were analyzed using 16S DNA gene sequencing. Results: The addition of SBOs increased (p<0.05) gas production, suggesting bacterial growth-stimulating activities. In addition, the concentrations of indole were significantly (p<0.05) decreased after SBO supplementation, and SBO III, with higher sucrose and stachyose contents, decreased (p<0.05) the skatole level. Our results also revealed that the fermentation of SBOs by cecal microbiota produced (p<0.05) SCFAs, which were dominated by propionic acid, butyrate acid and lactic acid compared to the control. In addition, SBO III increased (p<0.05) the abundance of Firmicutes and Subdoligranulum and decreased that of Bacteroides. Conclusion: These results suggest that SBOs with higher sucrose and stachyose contents are promising prebiotics in modulating gut microbiota and reducing odor emission in broilers.

Targeting the Gut Microbiome to Ameliorate Cardiovascular Diseases

  • Hwang, Soonjae;Park, Chan Oh;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.166-174
    • /
    • 2017
  • The bacterial cells located within the gastrointestinal tract (GIT) outnumber the host's cells by a factor of ten. These human digestive-tract microbes are referred to as the gut microbiota. During the last ten years, our understanding of gut microbiota composition and its relation with intra- and extra-intestinal diseases including risk factors of cardiovascular diseases (CVD) such as atherosclerosis and metabolic syndrome, have greatly increased. A question which frequently arises in the research community is whether one can modulate the gut microbial environment to 'control' risk factors in CVD. In this review, we summarized promising intervention methods, based on our current knowledge of intestinal microbiota in modulating CVD. Furthermore, we explore how gut microbiota can be therapeutically exploited by targeting their metabolic program to control pathologic factors of CVD.