• Title/Summary/Keyword: bacterial communities

Search Result 343, Processing Time 0.033 seconds

PCR-T- RFLP Analyses of Bacterial Communities in Activatced Sludges in the Aeration Tanks of Domestic and Industrial Wastewater Treatment Plants

  • RHO SANG CHUL;AN NAN HEE;AHN DAE HEE;LEE KYU HO;LEE DONG HUN;JAHNG DEOK JIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.287-295
    • /
    • 2005
  • In order to compare bacteria] community structure and diversity in activated sludges, terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16s rDNAs was analyzed for 31 domestic and industrial wastewater treatment plants (WTPs). Regardless of the characteristics of the wastewaters, the bacteria] community structures of activated sludges appeared diverse and complex. In particular, activated sludges in domestic WTPs contained higher bacterial diversity than those in industrial WTPs. It was also found that terminal restriction fragment (T-RF) profiles derived from domestic WTPs were very similar with each other, although activated sludges were collected from different plants at different locations. Interestingly, activated sludges of a WTP where restaurant and toilet sewages of a company were managed showed a bacterial community structure similar to that of domestic WTPs. Activated sludges in leather industria] WTPs also showed a high similarity. However, other wastewaters possessed different bacterial communities, so that overall similarity was as low as about $30\%$. Since activated sludges from WTPs for domestic wastewaters and a company sewage appeared to hold similar bacterial communities, it was necessary to confirm if similar wastewaters induce a similar bacterial community. To answer this question, analysis of T-RFs for activated sludges, taken from another 12 domestic WTPs, was conducted by using a 6­FAM$^{TM}$-Iabeled primer and an automated DNA sequencer for higher sensitivity. Among 12 samples, it was again found that T-RF profiles of activated sludges from Yongin, Sungnam, Suwon, and Tancheon domestic WTPs in Kyonggi-do were very similar with each other. On the other hand, T-RF profiles of activated sludges from Shihwa and Ansan WTPs were quite different from each other. It was thought that this deviation was caused by wastewaters, since Ansan and Shihwa WTPs receive both domestic and industrial wastewaters. From these results, it was tentatively concluded that similar bacterial communities might be developed in activated sludges, if WTPs treat similar wastewaters.

Fecal microbiota analysis of obese dogs with underlying diseases: a pilot study

  • Park, Hyung Jin;Lee, Sang Eun;Kim, Hyeun Bum;Kim, Jae Hoon;Seo, Kyoung Won;Song, Kun Ho
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.205-208
    • /
    • 2015
  • Ten dogs were enrolled in this study: two healthy dogs, two obese dogs without other medical issues and six obese dogs with underlying diseases including pemphigus, chronic active hepatitis, hyperadrenocorticism, narcolepsy, otitis media and heartworm infection. Pyrosequencing of the 16S rRNA gene to explore the gut bacterial diversity revealed that distal gut bacterial communities of samples from patients with pemphigus, otitis media and narcolepsy consisted primarily of Firmicutes, while the major phylum of the distal gut bacterial communities in patients with chronic active hepatitis and hyperadrenocorticism was Fusobacteria. Proteobacteria were the dominant phylum in heartworm infected obese patients.

CLPP of Biofilm in Free Chlorine Residual and Monochloramine (유리잔류염소와 모노클로라민에서의 생물막의 CLPP)

  • Lee Dong-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.147-151
    • /
    • 2005
  • The disinfection effect of free residual chlorine and monochloramine on biofilm communities were investigated by CLPP (community level physiology profile) using Biolog GN plates. Low concentration of disinfectant, $0.5\;mg/\iota$ free chlorine and $1.0\;mg/\iota$ monochloramine, stimulated the growth of bacteria rather than disinfection. Bacterial concentrations were decreased at more than $1.0\;mg/\iota$ of disinfectants. CLPP was different with the type and concentration of disinfectant and sampling time. Common and different carbon sources were actively used with similar bacterial concentration in free chlorine and monochloramine. This represents the differences of bacterial communities with tap water contact times and disinfectant.

Analysis of Rhizosphere Soil Bacterial Communities on Seonginbong, Ulleungdo Island (울릉도 성인봉의 근권 토양 세균군집 분석)

  • Nam, Yoon-Jong;Yoon, Hyeokjun;Kim, Hyun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.323-328
    • /
    • 2015
  • The study of microbial diversity and richness in soil samples from a volcanic island named Ulleungdo, located east of South Korea. The soil bacterial communities on the Ulleungdo were analyzed using pyrosequencing method based on 16S rRNA gene. There were 1,613 operational taxonomic units (OUT) form soil sample. From results of a BLASTN search against the EzTaxon-e database, the validated reads (obtained after sequence preprocessing) were almost all classified at the phylum level. Proteobacteria was the most dominant phylum with 48.28%, followed by acidobacteria (26.30%), actionbacteria (6.89%), Chloroflexi (4.58), Planctomycetes (4.56%), Nitrospirae (1.83%), Bacteroidetes (1.51%), Verrucomicrobia (1.48%), and Gemmatimonadetes (1.11%). α-proteobacteria was the most dominant class with 36.07% followed by Acidobacteria_c (10.65%), Solibacteres (10.64%), δ-proteobacteria (4.42%), γ-proteobacteria (4.29%), Planctomycetacia (4.16%), Actinobacteria_c (4.00%), Betaproteobacteria (3.50%), EU686603_c (2.97%), Ktedonobacteria (2.91%), Acidimicrobiia (1.32%), Verrucomicrobiae (1.27%), Gemmatimonadetes_c (1.11%), Sphingobacteria (1.09%), and GU444092_c (1.06%). Bradyrhizobiaceae was the most dominant family with 22.83% followed by Acidobacteriaceae (10.62%), EU445199_f (5.72%), Planctomycetaceae (4.03%), Solibacteraceae (3.63%), FM209092_f (3.58%), Steroidobacter_f (2.81%), EU686603_f (2.73%), Hyphomicrobiaceae (2.33%), Ktedonobacteraceae (1.75%), AF498716_f (1.46%), Rhizomicrobium_f (1.03%), and Mycobacteriaceae (1.01%). Differences in the diversity of bacterial communities have more to do with geography than the impact on environmental factors and also the type of vegetation seems to affect the diversity of bacterial communities.

Effects of American Ginseng Cultivation on Bacterial Community Structure and Responses of Soil Nutrients in Different Ecological Niches

  • Chang, Fan;Jia, Fengan;Lv, Rui;Guan, Min;Jia, Qingan;Sun, Yan;Li, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.419-429
    • /
    • 2022
  • American ginseng (Panax quinquefolium L.) is a perennial herbaceous plant widely cultivated in China, Korea, the United States, and Japan due to its multifunctional properties. In northwest China, transplanting after 2-3 years has become the main mode of artificial cultivation of American ginseng. However, the effects of the cultivation process on the chemical properties of the soil and bacterial community remain poorly understood. Hence, in the present study, high-throughput sequencing and soil chemical analyses were applied to investigate the differences between bacterial communities and nutrition driver factors in the soil during the cultivation of American ginseng. The responses of soil nutrition in different ecological niches were also determined with the results indicating that the cultivation of American ginseng significantly increased the soluble nutrients in the soil. Moreover, the bacterial diversity fluctuated with cultivation years, and 4-year-old ginseng roots had low bacterial diversity and evenness. In the first two years of cultivation, the bacterial community was more sensitive to soil nutrition compared to the last two years. Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Firmicutes, and Bacteroidetes dominated the bacterial community regardless of the cultivation year and ecological niche. With the increase of cultivation years, the assembly of bacterial communities changed from stochastic to deterministic processes. The high abundance of Sphingobium, Novosphingobium, and Rhizorhabdus enriched in 4-years-old ginseng roots was mainly associated with variations in the available potassium (AK), total phosphorus (TP), total potassium (TK), and organic matter (OM).

Comparison of metabolic diversity by sole carbon source utilization and genetic diversity by restriction patterns of amplified 16S rDNA (ARDRA)in soil bacterial communities. (토양세균 군집의 대사 다양성과 16S rDNA의 제한효소 지문분석에 의한 유전적 다양성의 비교)

  • 송인근;최영길;김유영;조홍범
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.72-77
    • /
    • 1999
  • To investigate soil bacterial diversity according to vegelalioo types, utilizing ability of sole carbon sources and restriction enzyme patterns of 16s rDNA were analyzed. From the both results; five kinds of soil microbial communities were grouped as forest soil (Quercus mongolica and Pinus densi&ra vegetation), grass-agricultured soil and microbial communities of naked soil. But, both soil microbial communities of directily exlracted from ths soil and indirectly extracted from heterotrophic bacteria that cultured soil in LB medium showed very different similarity.

  • PDF

Bacterial endophytes from ginseng and their biotechnological application

  • Chu, Luan Luong;Bae, Hanhong
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Ginseng has been well-known as a medicinal plant for thousands of years. Bacterial endophytes ubiquitously colonize the inside tissues of ginseng without any disease symptoms. The identification of bacterial endophytes is conducted through either the internal transcribed spacer region combined with ribosomal sequences or metagenomics. Bacterial endophyte communities differ in their diversity and composition profile, depending on the geographical location, cultivation condition, and tissue, age, and species of ginseng. Bacterial endophytes have a significant effect on the growth of ginseng through indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and nitrogen fixation. Moreover, bacterial endophytes can protect ginseng by acting as biocontrol agents. Interestingly, bacterial endophytes isolated from Panax species have the potential to produce ginsenosides and bioactive metabolites, which can be used in the production of food and medicine. The ability of bacterial endophytes to transform major ginsenosides into minor ginsenosides using β-glucosidase is gaining increasing attention as a promising biotechnology. Recently, metabolic engineering has accelerated the possibilities for potential applications of bacterial endophytes in producing beneficial secondary metabolites.

Analysis of excreta bacterial community after forced molting in aged laying hens

  • Han, Gi Ppeum;Lee, Kyu-Chan;Kang, Hwan Ku;Oh, Han Na;Sul, Woo Jun;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1715-1724
    • /
    • 2019
  • Objective: As laying hens become aged, laying performance and egg quality are generally impaired. One of the practical methods to rejuvenate production and egg quality of aged laying hens with decreasing productivity is a forced molting. However, the changes in intestinal microbiota after forced molting of aged hens are not clearly known. The aim of the present study was to analyze the changes in excreta bacterial communities after forced molting of aged laying hens. Methods: A total of one hundred 66-wk-old Hy-Line Brown laying hens were induced to molt by a 2-d water removal and an 11-d fasting until egg production completely ceased. The excreta samples of 16 hens with similar body weight were collected before and immediately after molting. Excreta bacterial communities were analyzed by high-throughput sequencing of bacterial 16S rRNA genes. Results: Bacteroidetes, Firmicutes, and Proteobacteria were the three major bacterial phyla in pre-molting and immediate post-molting hens, accounting for more than 98.0%. Lactobacillus genus had relatively high abundance in both group, but decreased by molting (62.3% in premolting and 24.9% in post-molting hens). Moreover, pathogenic bacteria such as Enterococcus cecorum and Escherichia coli were more abundant in immediate post-molting hens than in pre-molting hens. Forced molting influenced the alpha diversity, with higher Chao1 (p = 0.012), phylogenetic diversity whole tree (p = 0.014), observed operational taxonomic unit indices (p = 0.006), and Simpson indices (p<0.001), which indicated that forced molting increased excreta bacterial richness of aged laying hens. Conclusion: This study improves the current knowledge of bacterial community alterations in the excreta by forced molting in aged laying hens, which can provide increasing opportunity to develop novel dietary and management skills for improving the gastrointestinal health of aged laying hens after molting.

Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq

  • Lu, Gui-Hua;Zhu, Yin-Ling;Kong, Ling-Ru;Cheng, Jing;Tang, Cheng-Yi;Hua, Xiao-Mei;Meng, Fan-Fan;Pang, Yan-Jun;Yang, Rong-Wu;Qi, Jin-Liang;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.561-572
    • /
    • 2017
  • The global commercial cultivation of transgenic crops, including glyphosate-tolerant soybean, has increased widely in recent decades with potential impact on the environment. The bulk of previous studies showed different results on the effects of the release of transgenic plants on the soil microbial community, especially rhizosphere bacteria. In this study, comparative analyses of the bacterial communities in the rhizosphere soils and surrounding soils were performed between the glyphosate-tolerant soybean line NZL06-698 (or simply N698), containing a glyphosate-insensitive EPSPS gene, and its control cultivar Mengdou12 (or simply MD12), by a 16S ribosomal RNA gene (16S rDNA) amplicon sequencing-based Illumina MiSeq platform. No statistically significant difference was found in the overall alpha diversity of the rhizosphere bacterial communities, although the species richness and evenness of the bacteria increased in the rhizosphere of N698 compared with that of MD12. Some influence on phylogenetic diversity of the rhizosphere bacterial communities was found between N698 and MD12 by beta diversity analysis based on weighted UniFrac distance. Furthermore, the relative abundances of part rhizosphere bacterial phyla and genera, which included some nitrogen-fixing bacteria, were significantly different between N698 and MD12. Our present results indicate some impact of the glyphosate-tolerant soybean line N698 on the phylogenetic diversity of rhizosphere bacterial communities together with a significant difference in the relative abundances of part rhizosphere bacteria at different classification levels as compared with its control cultivar MD12, when a comparative analysis of surrounding soils between N698 and MD12 was used as a systematic contrast study.

Molecular Analysis of Bacterial Communities Distributed in Sea Water of Whitening Areas of Jeju Coast (제주연안 갯녹음(백화) 지역의 해수에 분포하는 세균군의 분자생물학적 분석)

  • 강형일;강봉조;김미란;윤병준;이동헌;오덕철
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.127-132
    • /
    • 2002
  • In this study, the bacterial communities distributed in sea water of the whitening areas of Gangjeong and Seongsan, Jeju-do have been analysed using the PCR amplification of 16S rRNA to obtain fundamental data and information on relationship of the whitening phenomenon and microbial ecosystem. In Gangjeong, diverse bacteria such as Alcanivorax, Paracoccus, Damselae, Pseudomonas, Rhodowlum, Silicibacter, Suiftobacter, and Roseobacter have been found, and Alcanivorax was the most abundant clone. The most abundant clone from Seongsan was Pseudomonas, of which Pseudomonas tolaasii and Pseudomonas mandeli were most abundantly occurred in the frequency of approx44% and 24%, respectively. Approx4% of the bacterial clones closest to Verrucomicrobiales and other unidentified clones were also fecund in Seongsan, suggesting there is a great discrepancy between bacterial communities from the whitening areas of Seongsan and Gangjeong. The mean temperature, chlorine concentration, pH, and dissolved oxygen (DO) of the sea water of Gangieong and Seongsan in August of 2001 (sampling period) was $27^{\circ}C$~$27.5^{\circ}C$, 30.24~30.60%, pH 8.23~8.36,7 .20~7.28 mg/ι, suggesting other environmental factors except far the factors mentioned above might result in difference of bacterial communities distributed in both areas.