• 제목/요약/키워드: bacterial challenge

검색결과 97건 처리시간 0.02초

Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants

  • Hong, Jeum Kyu;Kim, Hyeon Ji;Jung, Heesoo;Yang, Hye Ji;Kim, Do Hoon;Sung, Chang Hyun;Park, Chang-Jin;Chang, Seog Won
    • The Plant Pathology Journal
    • /
    • 제32권5호
    • /
    • pp.469-480
    • /
    • 2016
  • Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure ($10^6$ colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea . The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.

Biological control of Flavobacterium psychrophilum infection in ayu (Plecoglossus altivelis altivelis) using a bacteriophage PFpW-3

  • Kim, Ji Hyung;Park, Se Chang
    • 대한수의학회지
    • /
    • 제58권1호
    • /
    • pp.39-43
    • /
    • 2018
  • The efficacy of using a bacteriophage (phage) to control Flavobacterium psychrophilum (F. psychrophilum) infection of ayu (Plecoglossus altivelis altivelis) was evaluated in this study. Intramuscular challenge failed to induce sufficient infection levels; therefore, a newly designed net-scratch challenge method was also used to induce bacterial infection. Administration of phage PFpW-3 in F. psychrophilum-infected ayu showed notable protective effects, increased survival rates and mean times to death. Additionally, the fate of inoculated bacteria and phage in ayu were investigated. Our results suggest that the phage PFpW-3 could be considered an alternative biocontrol agent against F. psychrophilum infections in ayu culture.

Resistance Induction and Enhanced Tuber Production by Pre-inoculation with Bacterial Strains in Potato Plants against Phytophthora infestans

  • Kim, Hyo-Jeong;Jeun, Yong-Chull
    • Mycobiology
    • /
    • 제34권2호
    • /
    • pp.67-72
    • /
    • 2006
  • Efficacy of resistance induction by the bacterial isolates Pseudomonas putida (TRL2-3), Micrococcus luteus (TRK2-2) and Flexibacteraceae bacterium (MRL412), which were isolated from the rhizosphere of plants growing in Jeju Mountain, were tested in a greenhouse. The disease severity caused by Phytophthora infestans was effectively reduced in the potato plants pre-inoculated with bacterial isolates compared with those of the untreated control plants growing in a greenhouse. In order to estimate the level of protection by the bacterial isolates, Mancozeb WP (Diesen $M^{(R)}$, Kyong nong) and DL-3-amino butyric acid (BABA) were pre-treated, whereas Dimethomorph WP ($Forum^{(R)}$, Kyong nong) and phosphonic acid ($H_{3}PO_{3}$) were post-treated the challenge inoculation with the pathogen. Disease severities of chemical pre-treated as well as post-treated plants were reduced compare to those of the untreated. The disease reduction in the plants pre-treated with Mancozeb WP was the highest, whereas that of post-treated with Dimethomorph WP was the lowest. The yields of plants pre-inoculated with three bacterial isolates were greatly increased than those of control plants. These results suggest that biological control by bacterial isolates might be an alternative strategy against late blight disease in potato plants growing in greenhouse.

Induced Systemic Resistance by Bacillus vallismortis EXTN-1 Suppressed Bacterial Wilt in Tomato Caused by Ralstonia solanacearum

  • Park, Kyung-Seok;Paul, Diby;Kim, Yong-Ki;Nam, Ki-Woong;Lee, Young-Kee;Choi, Hyo-Won;Lee, Sang-Yeob
    • The Plant Pathology Journal
    • /
    • 제23권1호
    • /
    • pp.22-25
    • /
    • 2007
  • Biocontrol activity of five strains of selected rhizo-bacteria were tested in tomato against bacterial wilt caused by Ralstonia solanacearum. After root bacterization the plants were grown in a perlite-hydroponic system. Upon challenge inoculation with the pathogen, all of the rhizobacterial strains efficiently suppressed the bacterial wilt in tomato in various rates, at maximum by the strain, Bacillus vallismortis strain EXTN-1. While the percent of infected plants in the non-bacterized control plants were 95%, it was only 65% in plants pre-treated with EXTN-1. It was also demonstrated that the movement of R. solanacearum within the stem was significantly hampered when the plants were root bacterized. As EXTN-1 has no antagonistic properties against R. solanacearum, the bacterial wilt was probably suppressed by a mechanism other than antibiosis. Previously, the strain had been proven to produce an efficient elicitor for inducing systemic resistance in many crops. As the present study confirmed that EXTN-1 has the ability for reducing the pathogen spread in tomato, the strain could be effectively used as a potential biocontrol agent against bacterial wilt.

비피도박테리아의 생존성 증진을 위한 캡슐화 기술 (Microencapsulation Technology for Enhancement of Bifidobacterium spp. Viability: A Review)

  • 송민유;박원서;유자연;함준상
    • Journal of Dairy Science and Biotechnology
    • /
    • 제35권3호
    • /
    • pp.143-151
    • /
    • 2017
  • The intestinal microbiota has been shown to have a vital role in various aspects of human health, and accumulating evidence has shown the beneficial effects of supplementation with bifidobacteria for the improvement of human health, ranging from protection against infection to various positive effects. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Microencapsulation of probiotic bacterial cells provides protection against adverse conditions during processing, storage, and gastrointestinal passage. In this paper, we review the current knowledge, future prospects, and challenges of microencapsulation of probiotic Bifidobacterium spp.

Development of a toxA Gene Knock-out Mutant of Pasteurella multocida and Evaluation of its Protective Effects

  • Kim Tae-Jung;Lee Jae-Il;Lee Bong-Joo
    • Journal of Microbiology
    • /
    • 제44권3호
    • /
    • pp.320-326
    • /
    • 2006
  • Pasteurella multocida is an important veterinary and opportunistic human pathogen. In particular, strains of P. multocida serogroup D cause progressive atrophic rhinitis, and produce a potent, intracellular, mitogenic toxin known as P. multocida toxin (PMT), which is encoded by the toxA gene. To further investigate the toxigenic and pathogenic effects of PMT, a toxA-deleted mutant was developed by homologous gene recombination. When administrated to mice, the toxigenicity of the toxA mutant P. multocida was drastically reduced, suggesting that the PMT constributes the major part of the toxigenicity of P, multocida. Similar results were obtained in a subsequent experiment, while high mortalities were observed when toxA(+) P. multocida bacterial culture or culture Iysate were administrated. Mice immunized with toxA(-) P. multocida were not protected (none survived) following challenge with toxA(+) P. multocida or bacterial culture Iysate (toxin). These results suggest that the toxigenicity of P. multocida is mainly derived from PMT.

Rhizobacteria-mediated Induced Systemic Resistance in Cucumber Plants against Anthracnose Disease Caused by Colletotrichum orbiculare

  • Jeun, Yong-Chull;Lee, Yun-Jeong;Bae, Yeoung-Seuk
    • The Plant Pathology Journal
    • /
    • 제20권3호
    • /
    • pp.172-176
    • /
    • 2004
  • Bacterial isolates TRL2-3 and TRK2-2 showing anti-fungal activity in vitro test against some plant pathogens were identified as Pseudomonas putida and Micrococcus luteus, respectively. Pre-treatment with both bacterial isolates at the concentration 1.0$\times$ $10^7$ and $10^6$cfu/ml in the rhizosphere could trigger induced systemic resistance in the aerial part of cucumber plants against anthracnose caused by Colletotrichum orbiculare. However, the pre-treatment with the higher concentration at 1.0 $\times$ $10^8$ cfu/ml of both isolates could not induce resistance after challenge inoculation with C. orbiculare. As a positive control, the treatment with DL-3 amino butyric acid caused a remarkable reduction of disease severity whereas the lesions on the leaves of untreated plants developed apparently after the fungal inoculation. From these results, it was recomended that disease control using both bacterial isolates inducing systemic resistance in the field where chemical application is forbid.

Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa - Combination therapy against resistant bacteria -

  • Bazzaz, Bibi Sedigheh Fazly;Sarabandi, Sahar;Khameneh, Bahman;Hosseinzadeh, Hossein
    • 대한약침학회지
    • /
    • 제19권4호
    • /
    • pp.312-318
    • /
    • 2016
  • Objectives: Bacterial resistant infections have become a global health challenge and threaten the society's health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of $0.312-320{\mu}g/mL$. The MIC values of both types of catechins were $62.5-250{\mu}g/mL$. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance.

Observations of Infection Structures after Inoculation with Colletotrichum orbiculare on the Leaves of Cucumber Plants Pre-inoculated with Two Bacterial Strains Pseudomonas putida or Micrococcus luteus

  • Jeun, Yong-Chull;Lee, Kyung-Hoo
    • Mycobiology
    • /
    • 제33권3호
    • /
    • pp.131-136
    • /
    • 2005
  • Infection structures were observed at the penetration sites on the leaves of cucumber plants inoculated with Colletotrichum orbiculare using a fluorescence microscope. The cucumber plants were previously drenched with suspension of bacterial strains Pseudomonas putida or Micrococcus luteus. The plants pre-inoculated with both bacterial strains were resistant against anthracnose after inoculation with C. orbiculare. To investigate the resistance mechanism by both bacterial strains, the surface of infected leaves was observed at the different time after challenge inoculation. At 3 days after inoculation there were no differences in the germination and appressorium formation of conidia of C. orbiculare as well as in the callose formation of the plants between both bacteria pre-inoculated and non-treated. At 5 days, the germination and appressorium formation of the fungal conidia were, however, significantly decreased on the leaves of plants pre-inoculated with M. luteus at the concentration with $1.0{\times}10^7\;cfu/ml$. Furthermore, callose formation of plants cells at the penetration sites was apparently increased. In contrast, there were no defense reactions of the plants at the concentration with $1.0{\times}10^6\;cfu/ml$ of M. luteus. Similarly, inoculation P. putida caused no plant resistance at the low concentration, whereas increase of callose formation was observed at the higher concentration. The results of this study suggest that the resistant mechanisms might be differently expressed by the concentration of pre-treatment with bacterial suspension.

Developing a Virus-Binding Bacterium Expressing Mx Protein on the Bacterial Surface to Prevent Grouper Nervous Necrosis Virus Infection

  • Lin, Chia-Hua;Chen, Jun-Jie;Cheng, Chiu-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1088-1097
    • /
    • 2021
  • Grouper nervous necrosis virus (GNNV) infection causes mass grouper mortality, leading to substantial economic loss in Taiwan. Traditional methods of controlling GNNV infections involve the challenge of controlling disinfectant doses; low doses are ineffective, whereas high doses may cause environmental damage. Identifying potential methods to safely control GNNV infection to prevent viral outbreaks is essential. We engineered a virus-binding bacterium expressing a myxovirus resistance (Mx) protein on its surface for GNNV removal from phosphate-buffered saline (PBS), thus increasing the survival of grouper fin (GF-1) cells. We fused the grouper Mx protein (which recognizes and binds to the coat protein of GNNV) to the C-terminus of outer membrane lipoprotein A (lpp-Mx) and to the N-terminus of a bacterial autotransporter adhesin (Mx-AIDA); these constructs were expressed on the surfaces of Escherichia coli BL21 (BL21/lpp-Mx and BL21/Mx-AIDA). We examined bacterial surface expression capacity and GNNV binding activity through enzyme-linked immunosorbent assay; we also evaluated the GNNV removal efficacy of the bacteria and viral cytotoxicity after bacterial adsorption treatment. Although both constructs were successfully expressed, only BL21/lpp-Mx exhibited GNNV binding activity; BL21/lpp-Mx cells removed GNNV and protected GF-1 cells from GNNV infection more efficiently. Moreover, salinity affected the GNNV removal efficacy of BL21/lpp-Mx. Thus, our GNNV-binding bacterium is an efficient microparticle for removing GNNV from 10‰ brackish water and for preventing GNNV infection in groupers.