Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2016.0076

Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants  

Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kim, Hyeon Ji (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Jung, Heesoo (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Yang, Hye Ji (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kim, Do Hoon (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Sung, Chang Hyun (Turfgrass Science Institute, Hanul Inc.)
Park, Chang-Jin (Department of Bioresources Engineering and PERI, Sejong University)
Chang, Seog Won (Department of Golf Course Management, Korea Golf University)
Publication Information
The Plant Pathology Journal / v.32, no.5, 2016 , pp. 469-480 More about this Journal
Abstract
Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure ($10^6$ colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea . The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.
Keywords
bacterial wilt; grey mould; menadione; thiamine; tomato;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Nikolaou, E., Agrafioti, I., Stumpf, M., Quinn, J., Stansfield, I. and Brown, A. J. 2009. Phylogenetic diversity of stress signalling pathway in fungi. BMC Evol. Biol. 9:44.   DOI
2 Pradhanang, P. M., Ji, P., Momol, M. T., Olson, S. M., Mayfield, J. L. and Jones, J. B. 2005. Application of acibenzolar-Smethyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Dis. 89:989-993.   DOI
3 Pushpalatha, H. G., Mythrashree, S. R., Shetty, R., Geetha, N. P., Sharathchandra, R. G., Amruthesh, K. N. and Shetty, H. S. 2007. Ability of vitamins to induce downy mildew disease resistance and growth promotion in pearl millet. Crop Protect. 26:1674-1681.   DOI
4 Rapala-Kozik, M., Kowalska, E. and Ostrowska, K. 2008. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J. Exp. Bot. 59:4133-4143.   DOI
5 Rapala-Kozik, M., Wolak, N., Kujda, M. and Banas, A. K. 2012. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol. 12:2.   DOI
6 Rivard, C. L., O'Connell, S., Peet, M. M., Welker, R. M. and Louws, F. J. 2012. Grafting tomato to manage bacterial wilt caused by Ralstonia solanacearum in the southeastern United States. Plant Dis. 96:973-978.   DOI
7 Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria. 3rd ed. APS Press, St. Paul, MN, USA.
8 Abba, S., Khouja, H. R., Martino, E., Archer, D. B. and Perotto, S. 2009. SOD1-targeted gene disruption in the ericoid mycorrhizal fungus Oidiodendron maius reduces conidiation and the capacity for mycorrhization. Mol. Plant-Microbe Interact. 22:1412-1421.   DOI
9 Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138:1505-1515.   DOI
10 Smirnova, G. V., Muzyka, N. G., Glukhovchenko, M. N. and Oktyabrsky, O. N. 2000. Effects of menadione and hydrogen peroxide on glutathione status in growing Escherichia coli. Free Rad. Biol. Med. 28:1009-1016.   DOI
11 Tunc-Ozdemir, M., Miller, G., Song, L., Kim, J., Sodek, A., Koussevitzky, S., Misra, A. N., Mittler, R. and Shintani, D. 2009. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol. 151:421-432.   DOI
12 Anith, K. N., Momol, M. T., Kloepper, J. W., Marios, J. J., Olson, S. M. and Jones, J. B. 2004. Efficacy of plant growthpromoting rhizocbacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 88:669-673.   DOI
13 Arenas, F. A., Diaz, W. A., Leal, C. A., Perez-Donoso, J. M., Imlay, J. A. and Vasquez, C. C. 2010. The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. Biochem. Biophys. Res. Commun. 398:690-694.   DOI
14 Bahuguna, R. N., Joshi, R., Shukla, A., Pandey, M. and Kumar, J. 2012. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiol. Biochem. 57:159-167.   DOI
15 Soylu, E. M., Kurt, S. and Soylu, S. 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 143:183-189.   DOI
16 Tamarit, J., Cabisol, E. and Ros, J. 1998. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J. Biol. Chem. 273:3027-3032.   DOI
17 Vattanaviboon, P., Whangsuk, W. and Mongkolsuk, S. 2003. A suppressor of the menadione-hypersensitive phenotype of a Xanthomonas campestris pv. phaseoli oxyR mutant reveals a novel mechanism of toxicity and the protective role of alkyl hydroperoxides reductase. J. Bacteriol. 185:1734-1738.   DOI
18 Wang, L., Cai, K., Chen, Y. and Wang, G. 2013. Siliconmediated tomato resistance against Ralstonia solanacearum is associated with modification of soil microbial community structure and activity. Biol. Trace Elem. Res. 152:275-283.   DOI
19 Wei, Z., Huang, J. F., Hu, J., Gu, Y. A., Yang, C. L., Mei, X. L., Shen, Q. R., Xu, Y. C. and Friman, V. P. 2015. Altering transplantation time to avoid periods of high temperature can efficiently reduce bacterial wilt disease incidence with tomato. PLoS One 10:e0139313.   DOI
20 Wu, Z., Yin, X., Banuelos, G. S., Lin, Z. Q., Zhu, Z., Liu, Y., Yuan, L. and Li, M. 2016. Effect of selenium on control of postharvest gray mold of tomato fruit and possible mechanisms involved. Front. Microbiol. 6:1441.
21 Yamazaki, H. and Hoshina, T. 1995. Calcium nutrition affects resistance of tomato seedlings to bacterial wilt. HotScience 30:91-93.
22 Carmeille, A., Prior, P., Kodja, H., Chiroleu, F., Luisetti, J. and Besse, P. 2006. Evaluation of resistance to race 3, biovar 2 of Ralstonia solanacearum in tomato germplasm. J. Phytopathol. 154:398-402.   DOI
23 Ben-Jabeur, M., Ghabri, E., Myriam, M. and Hamada, W. 2015. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt. Plant Physiol. Biochem. 94:35-40.   DOI
24 Borges, A. A., Borges-Perez, A. and Fernandez-Falcon, M. 2003a. Effect of menadione sodium bisulfite, an inducer of plant defenses, on the dynamic of banana phytoalexin accumulation during pathogenesis. J. Agric. Food Chem. 51: 5326-5328.   DOI
25 Borges, A. A., Cools, H. J. and Lucas, J. A. 2003b. Menadione sodium bisulfite: a novel plant defence activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol. 52:429-436.   DOI
26 Borges, A. A., Dobon, A., Exposito-Rodriguez, M., Jimenez-Arias, D., Borges-Perez, A., Casanas-Sanchez, V., Perez, J. A., Luis, J. C. and Tornero, P. 2009. Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis. Plant Biotechnol. J. 7:744-762.   DOI
27 Boubakri, H., Wahab, M. A., Chong, J., Bertsch, C., Mliki, A. and Soustre-Gacougnolle, I. 2012. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiol. Biochem. 57:120-133.   DOI
28 Cristescu, S. M., De Martinis, D., Te Lintel Hekkert, S., Parker, D. H. and Harren, F. J. 2002. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl. Environ. Microbiol. 68:5342-5350.   DOI
29 Denslow, S. A., Walls, A. A. and Daub, M. E. 2005. Regulation of biosynthetic genes and antioxidant properties of vitamin B6 vitamers during plant defense responses. Physiol. Mol. Plant Pathol. 66:244-255.   DOI
30 Yamazaki, H., Kikuchi, S., Hoshina, T. and Kimura, T. 1999. Effect of calcium concentration in nutrient solution before and after inoculation with Ralstonia solanacearum on resistance of tomato seedlings to bacterial wilt. Soil Sci. Plant Nutr. 45:1009-1014.   DOI
31 Yan, L., Yang, Q., Jiang, J., Michailides, T. J. and Ma, Z. 2011. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Appl. Microbiol. Biotechnol. 90:215-226.   DOI
32 Yuliar, Nion, Y. A. and Toyota, K. 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30:1-11.   DOI
33 Zhang, Y., Jin, X., Ouyang, Z., Li, X., Liu, B., Huang, L., Hong, Y., Zhang, H., Song, F. and Li, D. 2015. Vitamin B6 contributes to disease resistance against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea in Arabidopsis thaliana. J. Plant Physiol. 175:21-25.   DOI
34 Hong, J. K., Kang, S. R., Kim, Y. H., Yoon, D. J., Kim, D. H., Kim, H. J., Sung, C. H., Kang, H. S., Choi, C. W., Kim, S. H. and Kim, Y. S. 2013. Hydrogen peroxide- and nitric oxidemediated disease control of bacterial wilt in tomato plants. Plant Pathol. J. 29:386-396.   DOI
35 Zhang, Y., Liu, B., Li, X., Ouyang, Z., Huang, L., Hong, Y., Zhang, H., Li, D. and Song, F. 2014. The de novo biosynthesis of vitamin B6 is required for disease resistance against Botrytis cinerea in tomato. Mol. Plant-Microbe Interact. 27:688-699.   DOI
36 Egashira, H., Kuwashima, A., Ishiguro, H., Fukushima, K., Kaya, T. and Imanishi, S. 2000. Screening of wild accessions resistant to gray mold (Botrytis cinerea Pers.) in Lycopersicon. Acta Physiol. Plant. 22:324-326.   DOI
37 Elad, Y. and Volpin, H. 1993. Reduced development of grey mould (Botrytis cinerea) in bean and tomato plants by calcium nutrition. J. Phytopathol. 139:146-156.   DOI
38 Han, Y. K., Min, J. S., Park, J. H., Han, K. S., Kim, D. H., Lee, J. S. and Kim, H. H. 2009. Screening of tomato cultivars resistant to bacterial wilts. Res. Plant Dis. 15:198-201 (in Korean).   DOI
39 Harel, Y. M., Mehari, Z. H., Rav-David, D. and Elad, Y. 2014. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150-157.   DOI
40 Hong, J. C., Momol, M. T., Ji, P., Olson, S. M., Colee, J. and Jones, J. B. 2011. Management of bacterial wilt in tomatoes with thymol and acibenzolar-S-methyl. Crop Protect. 30:1340-1345.   DOI
41 Hong, J. K., Yang, H. J., Jung, H., Yoon, D. J., Sang, M. K. and Jeun, Y. C. 2015. Application of volatile antifungal plant essential oils for controlling pepper fruit anthracnose by Colletotrichum gloeosporioides. Plant Pathol. J. 31:269-277.   DOI
42 Huang, Q. and Lakshman, D. K. 2010. Effect of clove oil on plant pathogenic bacteria and bacterial wilt of tomato and geranium. J. Plant Pathol. 92:701-707.
43 Igbaria, A., Lev, S., Rose, M. S., Lee, B. N., Hadar, R., Degani, O. and Horwitz, B. A. 2008. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Mol. Plant-Microbe Interact. 21:769-780.   DOI
44 Kim, H. S., Cho, K. W. and Lee, D. K. 2005. A study on the antimicrobial activity and preservative effect of thiamine dilauryl sulfate in cosmetics. J. Korean Oil Chemist's Soc. 22:212-218.
45 Imada, K., Tanaka, S., Ibaraki, Y., Yoshimura, K. and Ito, S. 2014. Antifungal effect of 405-nm light on Botrytis cinerea. Lett. Appl. Microbiol. 59:670-676.   DOI
46 Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M. and Jones, J. B. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89:497-500.   DOI
47 Jiang, J., Lu, Y., Li, J., Li, L., He, X., Shao, H. and Dong, Y. 2014. Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). PLoS One 9:e97753.   DOI
48 Jimenez-Arias, D., Borges, A. A., Luis, J. C., Valdes, F., Sandalio, L. M. and Perez, J. A. 2015. Priming effect of menadione sodium bisulphite against salinity stress in Arabidopsis involves epigenetic changes in genes controlling proline metabolism. Environ. Exper. Bot. 120:23-30.   DOI
49 Jyothi, H. K., Santhosha, H. M. and Basamma. 2012. Recent advances in breeding for bacterial wilt (Ralstonia solanacearum) resistance in tomato: review. Curr. Biotica 6:370-398.
50 Kim, Y. C., Kim, Y. H., Lee, Y. H., Lee, S. W., Chae, Y. S., Kang, H. K., Yun, B. W. and Hong, J. K. 2013. ${\beta}$-Amino-n-butyric acid regulates seedling growth and disease resistance of kimchi cabbage. Plant Pathol. J. 29:305-316.   DOI
51 Lai, T., Wang, Y., Li, B., Qin, G. and Tian, S. 2011. Defense responses of tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biol. Technol. 62:127-132.   DOI
52 Lehmann, S., Serrano, M., L'Haridon, F., Tjamos, S. E. and Metraux, J. P. 2015. Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112:54-62.   DOI
53 Lee, J. P., Lee, S. W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. Y., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Contr. 37:329-337.   DOI
54 Lee, M. J. and Ha, S. D. 2008. Synergistic effect of vitamins B1 on sanitizer and disinfectant treatments for reduction of coliforms in rice. Food Cont. 19:113-118.   DOI
55 Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. and Hong, J. K. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28:32-39.   DOI
56 Liu, L., Sun, C., Liu, S., Chai, R., Huang, W., Liu, X., Tang, C. and Zhang, Y. 2015. Bioorganic fertilizer enhances soil suppressive capacity against bacterial wilt of tomato. PLoS One 10:e0121304.   DOI
57 McFeeters, H. and McFeeters, R. L. 2012. Emerging approaches to inhibit Botrytis cinerea. Int. J. Mod. Bot. 2:127-144.
58 Molan, Y. Y. and El-Komy, M. H. 2010. Expression of Sl-WRKY1 transcription factor during B. cinerea tomato interaction in resistant and susceptible cultivars. Int. J. Plant Breed. Genet. 4:1-12.   DOI
59 Mongkolsuk, S., Loprasert, S., Vattanaviboon, P., Chanvanichayachai, C., Chamnongpol, S. and Supsamran, N. 1996. Heterologous growth phase- and temperature-dependent expression and $H_2O_2$ toxicity protection of a superoxideinducible monofunctional catalase gene from Xanthomonas oryzae pv. oryzae. J. Bacteriol. 178:3578-3584.   DOI
60 Nguyen, M. T. and Ranamukhaarachichi, S. L. 2010. Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J. Plant Pathol. 92:395-406.