• Title/Summary/Keyword: bacterial cell number

Search Result 182, Processing Time 0.036 seconds

Effect of AL072, a Novel Anti-Legionella Antibiotic, on Growth and Cell Morphology of Legionella pneumophila

  • Kang, Byeong-Cheol;Park, Jae-Hak;Lee, Yong-Soon;Suh, Jung-Woo;Chang, Jun-Hwan;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.371-375
    • /
    • 1999
  • AL072 is a potent anti-Legionella antibiotic produced by Streptomyces strain AL91. The minimum inhibitory concentration (MIC) of AL072 against Legionella pneumophila was 0.2$\mu$g/ml. Bacterial growth was rapidly inhibited at the dose range between the MIC and 20 times of the MIC when the antibiotic was added at the mid-exponential phase. Ultrastructural changes in L. pneumophila were observed upon treatment with AL072. Under electron microscopical observation, the organisms treated with AL072 exhibited characteristic morphological changes in the cellular outer coat. Also irregular morphological changes, such as the formation of filamentous materials in the cytoplasm, an increase in the size and number of cytoplasmic vacuoles, the extruding of cytoplasmic contents, the formation of spheroplast and ghost cells, and blebbings in the cell wall were observed. Furthermore, immunoelectron microscopical observation of the group treated with the MIC showed that the immune complex attached mainly to the cell wall. The results of these experiments indicate that AL072, like the inhibitors of cell wall synthesis, act selectively on the cell wall of L. pneumophila.

  • PDF

Microbial Community in Various Conditions of Soil Microcosm (벤젠과 톨루엔 분해에 적합한 미소환경과 토착미생물군의 분포변화)

  • 이한웅;이상현;이정옥;김현국;이수연;방성호;백두성;김동주;박용근
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.85-91
    • /
    • 2001
  • Biological treatment of benzene and toluene contaminated soil was investigated in laboratory microcosm of 16 different types for degrading benzene and toluene by indigenous bacteria. At the experimental conditions of the microcosms fast degrading benzene and toluene, moisture contents were 30% and 60% in a soil gap and content of powdered-activated carbon(PCA) for adhesion of benzene and toluene-degrading bacteria was 1% in total soil mass. At the conclusion of the shifted bacteria community, Case 6 and case 7 were operated until 10 days, and then the total cell number and the number of benzene and toluene degrading bacteria were investigated. The total cell number of Case 6 and Case 7 increased 488 fold and 308 fold of total indigenous cell, respectively. The number of benzene and toluene degrading bacteria increased and maintained the percentages occupied in pre-operating microcosm. Species of benzene and toluene degrading bacteria in microcosm changed from species of Gram negative bacteria to Gram positive bacterial species after soil exposed to benzene and toluene.

  • PDF

Enhancement of Biocontrol Activity of Serratia plymuthica A21 -4 Toward Phytophthora Blight of Pepper by Amendment of Nutritional Condition

  • Shen, Shun-Shan;Kim, Chang-Guk;Park, Chang-Seuk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.96.1-96
    • /
    • 2003
  • Serratia plymuthim A21-4 strongly inhibits the mycelial growth, zoospore formation, and cystospore germination of Phytophthor spp and Pythium species. The bacterial isolate produced antifungal substance and chitinase. The bacteria also enhanced to plant growth remarkably in low nutritional condition. The application of cell suspension of A21-4 to pepper seedlings in greenhouse experiments and soil drenching in farmer's field was proved successfully to control the phythophthora blight of pepper. For the effective control, however, relatively high density of cell number(10$\^$9/cfu/$m\ell$) is required. Density effect was similar in plant growth promoting activity of A21-4. Though this investigation we improved the problem with changes of culture condition of bacteria and some nutritional amendment.

  • PDF

Characterization of Pectate Lyase Produced by Erwinia rhapontici During Growth in Host Plant Tissue (Erwinia rhapontici가 기주식물 조직에서 생산한 Pectate Lyase의 특성)

  • 최재을
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.163-168
    • /
    • 1994
  • Erwinia rhapontici causes soft-rot disease in a number of plants such as rhubarb, onion, hyacinth and garlic. Pectate lyase (Pel) depolymerizes pectin and other polygalacturonates, which is though to play a role in bacterial invasion of plants. Pel activity was not detected in E. rhapontici cultured in a minimal salts medium containing glycerol, polygalacturonate, or citrus pectin as a carbon source. However, when sterilized potato tuber and Chinese cabbage slices were added to minimal salts polygalacturonate (0.5%) medium, E. rhapontici produced pectate lyase enzyme. Also Pel activity was consistently detected from macerated potato tubers, Chinese cabbage leaves, lettuce leaves and celery petioles tissue. Pel in the extract of macerated Chinese cabbage caused by E. rhapontici strain 1, resulted in electrolyte loss, tissue maceration and cell death of potato tuber tissue. These results indicate that E. rhapontici produces pectate lyase only in the presence of non-diffusible plant components, and that this enzyme probably contributes to its pathogenicity.

  • PDF

The Seasonal Variation of Active Bacterial Abundance in Lake Soyang (소양호에서 활성세균수의 계절적.수직적 변화)

  • 석정현;홍선희;김범철;안태석
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.80-84
    • /
    • 2001
  • Vertical and temporal variations of active and total bacterial abundance were monthly estimated in Lake Soyang from April 1999 to January 2000. The number of total and respiring bacteria was determined directly under microscope by AODC and CTC methods, respectively. The number of total and active bacteria varied from $2.1{\times}10^5 to 3.1{\times}10^6 $,$cells{\cdot}ml^{-1}$ and $1.8{\times}10^4 to 8.0{\times}10^5 $,$cells{\cdot}ml^{-1}$, respectively. The proportions of respiring bacteria to total cell ranged from 3.7 to 44.2% : The proportions was the highest in November 1999 and the lowest in December 2000. The specific activity of${\beta}$-glucosidase divided by total bacteria was$1.6{\times}10^5\;amol{\cdot}cell^{-1}{\cdot}hr^{-1}$in August and$1.4{\times}10^5\;amol{\times}cell^{-1}{\times}hr^{-1}$in September while the specific activity divided by CTC active bacteria was about$3.6{\times}10^5\;amol{\cdot}cell^{-1}{\cdot}hr^{-1},\;24.0{\times}10^5\;amol{cdot}cell^{-1}{cdot}hr^{-1}$. The specific activity of active bacteria in September was 6.7 times higher than that of August. By these data of active bacteria, the new information of aquatic ecosystem was unveiled.

  • PDF

Viable Bacterial Cell Patterning Using a Pulsed Jet Electrospray System

  • Chong, Eui-seok;Hwang, Gi Byung;Kim, Kyoungtae;Lee, Im-Soon;Han, Song Hee;Kim, Hyung Joo;Jung, Heehoon;Kim, Sung-Jin;Jung, Hyo Il;Lee, Byung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.381-385
    • /
    • 2015
  • In the present study, drop-on-demand two-dimensional patterning of unstained and stained bacterial cells on untreated clean wafers was newly conducted using an electrospray pulsed jet. We produced various spotted patterns of the cells on a silicon wafer by varying the experimental conditions, such as the frequency, flow rate, and translational speed of the electrospray system in a two-dimensional manner. Specifically, the electrospray's pulsed jet of cell solutions produced alphabetical patterns consisting of spots with a diameter of approximately $10{\mu}m$, each of which contained a single or a small number of viable bacteria. We tested the viability of the patterned cells using two visualization methods. This pattering technique is newly tested here and it has the potential to be applied in a variety of cell biology experiments.

Proteomic Evaluation of Cellular Responses of Saccharomyces cerevisiae to Formic Acid Stress

  • Lee, Sung-Eun;Park, Byeoung-Soo;Yoon, Jeong-Jun
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.302-309
    • /
    • 2010
  • Formic acid is a representative carboxylic acid that inhibits bacterial cell growth, and thus it is generally considered to constitute an obstacle to the reuse of renewable biomass. In this study, Saccharomyces cerevisiae was used to elucidate changes in protein levels in response to formic acid. Fifty-seven differentially expressed proteins in response to formic acid toxicity in S. cerevisiae were identified by 1D-PAGE and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analyses. Among the 28 proteins increased in expression, four were involved in the MAP kinase signal transduction pathway and one in the oxidative stress-induced pathway. A dramatic increase was observed in the number of ion transporters related to maintenance of acid-base balance. Regarding the 29 proteins decreased in expression, they were found to participate in transcription during cell division. Heat shock protein 70, glutathione reductase, and cytochrome c oxidase were measured by LC-MS/MS analysis. Taken together, the inhibitory action of formic acid on S. cerevisiae cells might disrupt the acidbase balance across the cell membrane and generate oxidative stress, leading to repressed cell division and death. S. cerevisiae also induced expression of ion transporters, which may be required to maintain the acid-base balance when yeast cells are exposed to high concentrations of formic acid in growth medium.

Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications

  • Khan, Raham Sher;Sjahril, Rinaldi;Nakamura, Ikuo;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Potato (Solanum tuberosum L.), one of the most important food crops, is susceptible to a number of devastating fungal pathogens in addition to bacterial and other pathogens. Producing disease-resistant cultivars has been an effective and useful strategy to combat the attack of pathogens. Potato was transformed with Agrobacterium tumefaciens strain EHA101 harboring chitinase, (ChiC) isolated from Streptomyces griseus strain HUT 6037 and bialaphos resistance (bar) genes in a binary plasmid vector, pEKH1. Polymerase chain reaction (PCR) analysis revealed that the ChiC and bar genes are integrated into the genome of transgenic plants. Different insertion sites of the transgenes (one to six sites for ChiC and three to seven for bar) were indicated by Southern blot analysis of genomic DNA from the transgenic plants. Expression of the ChiC gene at the messenger RNA (mRNA) level was confirmed by Northern blot analysis and that of the bar gene by herbicide resistance assay. The results obviously confirmed that the ChiC and bar genes are successfully integrated and expressed into the genome, resulting in the production of bialaphos-resistant transgenic plants. Disease-resistance assay of the in vitro and greenhouse-grown transgenic plants demonstrated enhanced resistance against the fungal pathogen Alternaria solani (causal agent of early blight).

Effect of Exposure Concentration and Time of Fuel Additives on the Indigenous Microbial Community in Forests (산림 토착 미생물 군집에 미치는 유류 첨가제 노출 농도 및 시간의 영향)

  • Cho, Won-Sil;Cho, Kyung-Suk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.387-394
    • /
    • 2008
  • The toxicity of methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA) and formaldehyde (FA) on the indigenous microbial community in forest soil was studied. MTBE, TBA and FA with different concentrations were added into microcosms containing forest soil samples. After 10 and 30 days, total viable cell number and dehydrogenase activity in the microcosms were evaluated. Bacterial communities in the microcosms were also analyzed using a denaturing gradient gel electrophoresis (DGGE). Dehydrogenase activity and total viable cell number were decreased according to the increase of MTBE, TBA and FA concentrations (P<0.05). FA toxicity was the highest, but TBA toxicity was the lowest. The results of principal component analysis using DGGE fingerprints showed that the microbial communities contaminated MTBE, TBA and FA were grouped by exposure time not exposure concentration. Dominant species in the microcosms were as follows: Photobacterium damselae sub sp. and Bacillus sp. KAR28 for MTBE; Mycobacterium sp. and Uncultured Clostridium sp. for TBA; and Uncultured Paenibacillaceae bacterium and Anxynobacillus, Flavithermus for FA.

Antimicrobal Activity of Sutellaria baicalensis·Coptidis rhizoma Extract on the Preservation of Makgeolli (황금·황련 추출물의 항균활성이 막걸리 저장성에 미치는 영향)

  • Park, Soon-Hi;Lee, Seul;Jin, Hyo-Sang
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.974-979
    • /
    • 2012
  • This research was carried out to find herbal preservatives for Makgeolli, as Makgeolli loses its commercial value due to overproduced acidic materials. When Makgeolli was kept at $25^{\circ}C$ to find the changes in acidity, total microbial cell number, yeast cell number, and bacterial species variety, a sudden increase of acidity as well as the disappearance of yeast cells occurred at day 6, and Makgeolli was changed to complete off-flavor. Acetobacter pasteurianus is the main acidifier in Makgeolli and shows a synergy effect in acid formation when cultured in combination with Lactobacillus casei. Among 12 herbs, the ethanol extract of Sutellaria baicalensis showed antimicrobial activity against A. pasteurianus, whereas the ethanol extract of Coptidis rhizoma showed antimicrobial activity against L. casei. Makgeolli added with Sutellaria baicalensis extracts demonstrated a lower acidity than that with Coptidis rhizoma extracts, which indicates that the inhibition of an acetic acid former is more important than that of a lactic acid former in Makgeolli preservation. Sutellaria baicalensis extracts prolonged the shelf life of Makgeolli by 1~2 weeks at a minimal inhibitory concentration ($0.63mg/m{\ell}$) during storage at $10^{\circ}C$.