• Title/Summary/Keyword: bacterial activity

Search Result 2,184, Processing Time 0.023 seconds

Fermentative Characteristics and Anti-Proliferative Activity against Mouse Carcinoma Cell Line of Kimchi prepared with Functional Cabbage (기능성 배추 김치의 발효 특성과 암세포 증식저해능)

  • Yu, Kwang-Won;Lee, Seong-Hyun;Shin, Eun-Hae;Hwang, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.1007-1014
    • /
    • 2017
  • To compare functional Chinese cabbage('Amtak' baechu; F1 hybrid cultivar between Brassica rapa and B. perkinensis, AB) with general Chinese cabbage ('Chunkwang' baechu; general spring cultivar, CB), two kinds of kimchi(ABK and CBK) prepared with AB and CB cultivar were fermented at $10^{\circ}C$ for 10 days. Their fermentative characteristics and anti-proliferative activities against mouse carcinoma cell lines were investigated. General kimchi(CBK) showed mature pH on the $6^{th}$ day of fermentation, whereas functional kimchi(ABK) reached pH on the $9^{th}$ day. CBK also exhibited acidity of mature stage on the $6^{th}$ day, but ABK reached mature acidity on the $9^{th}$ day. Although ABK and CBK were salted in the same condition, ABK had lower salinity than CBK, throughout the fermentation time. The highest total bacterial and lactic bacterial counts of CBK showed on the $8^{th}$ day of fermentation, but ABK showed the highest total bacterial and lactic bacterial counts on the $10^{th}$ day. The texture of ABK was harder than CBK for fermentation time. This seems to be corrleated with the slower fermentation rate of ABK. ABK showed significantly higher anti-proliferative activity (54.6% cell viability of control) in B16BL6 at $1,000{\mu}g/mL$. ABK was also higher in anti-proliferative activity than CBK throughout the fermentation time. However, there was no significant difference in the anti-proliferative activity of ABK between the fermentation times. In conclusion, fermentation of ABK showed a better texture, due to the slow fermentation rate and more anti-proliferative activity against mouse carcinoma cell line than those of CBK.

Antibacterial Activity of Selected Fruit Juices against Multidrug-Resistant Bacterial Pathogens Involved in Urinary Tract and Sexually Transmitted Infections among Tribal Women in Madhya Pradesh, India

  • Poonam Sharma;Juhi;Vaishali Halwai;Sainivedita Rout;Rambir Singh
    • Journal of Pharmacopuncture
    • /
    • v.26 no.3
    • /
    • pp.265-275
    • /
    • 2023
  • Objectives: The aim of this study was to evaluate the effect of fruit juices on Multi-Drug Resistant (MDR) bacterial pathogens involved in Urinary Tract Infections (UTIs) and Sexually Transmitted Infections (STIs) among tribal women in the district Anuppur, Madhya Pradesh, India. Methods: Fresh juices of lemon (Citrus limon), amla/Indian gooseberry (Phyllanthus emblica), pineapple (Ananas comosus), mosambi/sweet lime (Citrus limetta), orange (Citrus sinensis), kiwi (Actinidia deliciosa), and pomegranate (Punica granatum) fruits were evaluated for in vitro antibacterial activity against bacterial pathogens involved in UITs and STIs among tribal women. Physico-chemical analysis of fresh fruits was also carried out by measuring the pH, moisture, protein, fat, crude fibre, carbohydrate, and ascorbic acid content. Results: Lemon and amla juice showed better antibacterial activity against the pathogens as compared to other juices. MIC results fruit juices against UTIs and STIs pathogens vary depending on the specific pathogen and juice chemical constituents. The physico-chemical analysis showed that the moisture content was highest in mosambi (90%), followed by orange (87%). Ascorbic acid content was found highest in amla (540 mg/100 g), followed by kiwi (90.3 mg/100 g). Pomegranate showed highest concentration of carbohydrate (15.28 g/100 g), fat (1.28 g/100 g), and protein (1.65 g/100 g). Lemon juice had lowest pH of 2.20, followed by amla 2.67. Conclusion: The lemon juice showed highest antibacterial activity against MDR bacterial pathogens involved in UTIs and STIs among tribal women in district Anuppur, Madhya Pradesh, India. The low pH of lemon may be responsible for its high antibacterial activity as compared to other juices.

Antimicrobial Flavonoid, 3,6-Dihydroxyflavone, Have Dual Inhibitory Activity against KAS III and KAS I

  • Lee, Jee-Young;Lee, Eun-Jung;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3219-3222
    • /
    • 2011
  • Three types of ${\beta}$-ketoacyl acyl carrier protein synthase (KAS) are important for overcoming the bacterial resistance problem. Recently, we reported the discovery of a antimicrobial flavonoid, YKAF01 (3,6-dihydroxyflavone), which exhibits antibacterial activity against Gram-positive bacteria through inhibition of ${\beta}$-ketoacyl acyl carrier protein synthase III (KAS III). In this report, we suggested that YKAF01 can be an inhibitor ${\beta}$-ketoacyl acyl carrier protein synthase I (KAS I) with dual inhibitory activity for KAS I as well as KAS III. KAS I is related to the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and can be a good therapeutic target of designing novel antibiotics. We performed docking study of Escherichia coli KAS I (ecKAS I) and YKAF01, and determined their binding model. YKAF01 binds to KAS I with high binding affinity ($2.12{\times}10^6$) and exhibited an antimicrobial activity against the multidrug-resistant E. coli with minimal inhibitory concentration (MIC) value of 512 ${\mu}g$/mL. Further optimization of this compound will be carried out to improve its antimicrobial activity and membrane permeability against bacterial cell membrane.

Genomic Insights into Nematicidal Activity of a Bacterial Endophyte, Raoultella ornithinolytica MG against Pine Wilt Nematode

  • Shanmugam, Gnanendra;Dubey, Akanksha;Ponpandian, Lakshmi Narayanan;Rim, Soon Ok;Seo, Sang-Tae;Bae, Hanhong;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.250-255
    • /
    • 2018
  • Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, is one of the most devastating conifer diseases decimating several species of pine trees on a global scale. Here, we report the draft genome of Raoultella ornithinolytica MG, which is isolated from mountain-cultivated ginseng plant as an bacterial endophyte and shows nematicidal activity against B. xylophilus. Our analysis of R. ornithinolytica MG genome showed that it possesses many genes encoding potential nematicidal factors in addition to some secondary metabolite biosynthetic gene clusters that may contribute to the observed nematicidal activity of the strain. Furthermore, the genome was lacking key components of avermectin gene cluster, suggesting that nematicidal activity of the bacterium is not likely due to the famous anthelmintic agent of wide-spread use, avermectin. This genomic information of R. ornithinolytica will provide basis for identification and engineering of genes and their products toward control of pine wilt disease.

Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

  • Kwak, A Min;Min, Kyeong Jin;Lee, Sang Yeop;Kang, Hee Wan
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding ${\beta}$-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction.

Activities of Ketonic Fraction from Leptospermum scoparium alone and Synergism in Combination with Some Antibiotics Against Various Bacterial Strains and Fungi (Leptospermum scoparium 추출물중 케톤체 분획물의 항균력 및 항생제와의 병용효과)

  • 김은희;이계주
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.716-728
    • /
    • 1999
  • Whole oil and ketonic fraction (KF) of Leptospermum scoparium have been tested for their antimicrobial activity and combination effect with several antibiotics against various bacterial strains and fungi by using microbiological assay methods. Antibacterial activities of KF against a number of test strains were 2-3 fold stronger than those of whole oil. MICs of the KF were $65~125{\;}{\mu\textrm{g}}/ml$ against seven gram positive bacterial strains, $65~250{\;}{\mu\textrm{g}}/ml$ against 19 methicillin resistance Staphylococcus aureus strains, and $65~50{\;}{\mu\textrm{g}}/ml$ against 14 quinolone resistance strains. However, KF showed little or no activity against gram negative bacteria. MICs of the KF were $16~250{\;}{\mu\textrm{g}}/ml$ against more than 50% of the anaerobic bacterial strains tested. KF showed the higher antibacterial activity than bacitracin against 10 strains of Bacteroids thetaiotaomicron, or three strains of Bacteroides ovatus, and the more active than ciprofloxacin against one strain of Bacteroides thetaiotaomicron and three strains of Bacteroids ovatus. The MICs of KF was 63 and $250{\;}{\mu\textrm{g}}/ml$ against Aspergillus niger and Candida albicans, respectively. Antibacterial activities of KF in combination with 19 antibiotics against 14 strains and with four antifungal agents against one fungal strain were determined by paper strip diffusion method. While most of combination showed additivity, KF showed synergism with bacitracin, exfadroxil, cephradin, and meropenem for 29~57% of the strains tested. However, ofloxacin, enoxacin, sparfloxacin showed antagonism with KF for 43~71% of the strains. KF alone and in combination with bacitracin, gentamycin, neomycin, itraconazole, fluconazole, terfinafine and ketoconazole against five bacterial strains or one fungus strain synergistic effect was demonstrated against 33% of strains examined with FIC index value below 0.5 by checkerboard study. Synergistic effect of KF with gentamicin against Staphylococcus epidermidis 329 (QRS) was found by time-kill study.

  • PDF

Antibacterial Activity of the Honey Bee Venom against Bacterial Mastitis Pathogens Infecting Dairy Cows

  • Han, Sang-Mi;Lee, Kwang-Gill;Yeo, Joo-Hong;Kweon, Hae-Yong;Kim, Bong-Soon;Kim, Jae-Myung;Baek, Ha-Ju;Kim, Soon-Tae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.2
    • /
    • pp.137-142
    • /
    • 2007
  • The antibacterial activity of Korean honey bee venom (KBV) was examined against seven major bacterial mastitis pathogens, Enterococcus faecium, Escherichia coli, Methicillin resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Streptococcus intermedius, Streptococcus oralis and Streptococcus uberis isolated from infected mammary quarters of cows. Seven bacterial mastitis pathogens were studied for antibacterial activity of the KBV by disc diffusion assay, minimal inhibitory concentrations (MIC) and bacterial count in milk samples. The KBV showed activity against Ent. faecium, E. coli, MRSA, Staph. aureus, Strep. intermedius. The order of susceptibility of the bacteria against the KBV was Staph. aureus>MRSA>E. coli>Strep. intermedius>Ent. faecium>Strep. oralis>Strep. uberis. The MIC against Staph. aureus, MRSA and E. coli were stronger effect as compared with standard drug. The effect of the KBV ($100{\mu}g\;ml^{-1}$) on the viability of Ent. faecium, E. coli, MRSA, Staph. aureus, Strep. intermedius, Strep. oralis and Strep. uberis in milk differed significantly with each other within 12 h incubation period. The results indicate that KBV has significant antibacterial effects against major bacterial mastitis bacteria, Ent. faecium, E.coli, MRSA, Staph. aureus, Strep. intermedius. Results of the study indicate the potential use of KBV as alternative to antibiotic therapy. Further investigations are needed though to confirm its efficacy and its effects on the animals.

Endophytic Bacillus subtilis MJMP2 from Kimchi inhibits Xanthomonas oryzae pv. oryzae, the pathogen of Rice bacterial blight disease

  • Cheng, Jinhua;Jaiswal, Kumar Sagar;Yang, Seung Hwan;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.149-154
    • /
    • 2016
  • An endophytic bacterial strain was isolated from kimchi, a Korean traditional fermented Brassica campestris and identified as Bacillus subtilis MJMP2 based on the 16S rRNA sequence. This strain showed strong antagonistic activity against Xanthomonas oryzae pv. oryzae (Xoo) KACC10331, the pathogen of bacterial rice blight disease, as well as activity against some other rice phytopathogenic fungi. The active compound was purified through size-exclusion chromatography and preparative High-performance liquid chromatography. The molecular weight was determined as m/z 1043 by mass spectroscopy, which is identical to that of iturin A. Furthermore, a crude extract from the culture supernatant of Bacillus subtilis MJMP2 showed inhibitory activity against rice blight disease in both a rice leaf explant assay and a pot assay. The crude extract also enhanced the length of roots of Arabidopsis thaliana. These results suggest that the strain Bacillus subtilis MJMP2 could be used as a biological agent to control rice blight disease.

Direct Antimicrobial Activity and Induction of Systemic Resistance in Potato Plants Against Bacterial Wilt Disease by Plant Extracts

  • Hassan, M.A.E.;Bereika, M.F.F.;Abo-Elnaga, H.I.G.;Sallam, M.A.A.
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.352-360
    • /
    • 2009
  • The potential of three plants extracts, to protect potato plants against bacterial wilt caused by Ralstonia solanacearum was determined under greenhouse and field conditions. All soil drenching treatments of aqueous plant extracts of Hibsicus sabdariffa, Punica granatum and Eucalyptus globulus significantly reduced the disease severity compared with inoculated control. Although the applications of all three plant extracts resulted in similar reductions of disease severity in field up 63.23 to 68.39%, treatment of E. globulus leaf extract was found greater in restricting the symptom development than other the two plant extracts in the greenhouse. More than 94% reduction in the bacterial wilt symptom was observed in potato plants. All tested plant extracts were effective in inhibiting the growth of bacterial pathogen, not only in vitro, but also in stem of potato plants as compared with the inoculated control Potato plants treated with extract of H. sabdariffa reduced bacterial growth more effectively than treatment with P. granatum and E. globulus. Activity of defence-related enzymes, including peroxidase, polyphenoloxidase and phenylalanine ammonia lyase, were significantly increased in plants treated with the plant extracts compared to the control during the experimental period. In general, the higher enzymes activities were determined in both inoculated and non-inoculated treated potato plants after 8 days from plant extracts treatment. These results suggested that these plant extracts may be play an important role in controlling the potato bacterial wilt disease, through they have antimicrobial activity and induction of systemic resistance in potato plants.

The Activity and Structure of Bacterial Community within Artificial Vegetation Island (AVI) (인공 수초재배섬에서 세균의 활성과 세균 군집 구조)

  • Jeon, Nam-Hui;Park, Hae-Kyung;Byeon, Myeong-Seop;Choi, Myung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.676-682
    • /
    • 2007
  • The bacterial number, extracellular enzyme activities and structure of bacterial community which are major constituent of aquatic ecosystem within the artificial vegetation island (AVI) were compared to those of the nearby pelagic lake waters in order to evaluate the possibility of the AVI as a eco-technological measure for water quality improvement and restoration of littoral zone in man-made reservoirs. There was not a significant difference in the total number of bacteria, but the number of active (viable) bacteria within the AVI was about 0.7 to 4.1 times higher than nearby pelagic lake water. The ratio of the number of active bacteria versus the total number of bacteria was also higher in the AVI than nearby pelagic lake water. The activities of ${\beta}$-glucosidase and phosphatase were 1.0 to 13.1 and 0.8 to 7.3 times higher respectively in the AVI than nearby pelagic lake water, showing that microorganisms were more active within the AVI. The bacterial communities of the two waters, examined by FISH method, did not indicate a clear difference in the springtime when the growth of macrophytes was immature, but during summer and fall it showed a clear difference indicating the formation of distinct bacterial community within the AVI compared to nearby lake water. From the results of this study, we conclude that AVI can contribute to make up the littoral ecosystem which show rapid cycling of matters through active detritus food chain in the dam reservoirs which have unstable aquatic ecosystem due to short hydraulic residence time and to strengthen the self-purification capacity of the lake.