• Title/Summary/Keyword: bacteria strain B-1

Search Result 236, Processing Time 0.028 seconds

Isolation and Identification of Feather-Degrading Bacteria for Biotechnological Applications of Keratinaceous Protein Waste (케라틴 단백질 폐기물의 생물공학적 적용을 위한 우모 분해세균의 분리 및 동정)

  • 손홍주;김용균;박연규
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.229-234
    • /
    • 2004
  • Feathers, which are almost pure keratin protein, are produced in large amounts as a waste by-product at poultry-processing plants. Keratinolytic enzymes may have important uses in biotechnological processes involving keratin-containing wastes from poultry and leather processes. In this study, screening and identification of keratin-degrading bacteria were investigated. Five keratin-degrading bacterial strains (F3-1, F3-4, F7-1, C1-1, C1-2) were isolated from compost and decayed chicken feather. On the basis of morphological, physiological studies, and Biolog system, all isolates were identified as the genus Bacillus. Among them, the strain F7-1 had the highest feather-degrading activity and was selected for further taxonomical study. Phylogenetic analysis of strain F7-1 based on comparison of 165 rDNA sequences revealed that this strain is closely related to Bacillus megaterium.

Optimization of Mutant Strain of the Sulfur-Oxidizing Bacteria, Thiobacillus sp. UIW-6 (황산화 세균 Thiobacillus sp. UIW-6 변이주의 성장 최적화)

  • Shin, Seung-Yong;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • To reducing offensive odor form compost UIW-6 mutant obtained by UV treatment from sulfur-oxidizing bacteria, Thiobacillus sp. IW. The UIW-6 mutant was found 1.6 times faster in growth than the parent strain on thiosulfate medium (TM) at 36 h after incubation. Initial pH, temperature and agitation for the optimum growth of UIW-6 were 6.5, $35^{\circ}C$ and 200 rpm, respectively. The UIW-6 mutant growth was two times higher than parent strain at 6 h culture in TM liquid medium containing 50 mM sodium thiosulfate. The UIW-6 mutant used fructose and sucrose as carbon sources and yeast extract> tryptone> peptone as nitrogen ones. It was found that the growth of UIW-6 was increased in addition of 0.2% yeast extract.

β-Galactosidase Gene of Thermus thermophilus KNOUC112 Isolated from Hot Springs of a Volcanic Area in New Zealand: Identification of the Bacteria, Cloning and Expression of the Gene in Escherichia coli

  • Nam, E.S.;Choi, J.W.;Lim, J.H.;Hwang, S.K.;Jung, H.J.;Kang, S.K.;Cho, K.K.;Choi, Y.J.;Ahn, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1591-1598
    • /
    • 2004
  • To isolate the $\beta$-galactosidase producing thermophilic bacteria, samples of mud and water were collected from hot springs of avolcanic area near Golden Springs in New Zealand. Among eleven isolated strains, the strain of KNOUC112 produced the highest amounts of $\beta$-galactosidase at 40 h incubation time (0.013 unit). This strain was aerobic, asporogenic bacilli, immobile, gram negative, catalase positive, oxidase positive, and pigment producing. Optimum growth was at 70-72$^{\circ}C$, pH 7.0-7.2, and it could grow in the presence of 3% NaCl. The main fatty acids of cell components were iso-15:0 (30.26%), and iso-17:0 (31.31%). Based on morphological and biochemical properties and fatty acid composition, the strain could be identified as genus Thermus, and finally as Thermus thermophilus by phylogenetic analysis based on 16S rRNA sequence. So the strain is designated as Thermus thermophilus KNOUC112. A gene from Thermus thermophilus KNOUC112 encoding $\beta$-galactosidase was amplified by PCR using redundancy primers prepared based on the structure of $\beta$-galactosidase gene of Thermus sp. A4 and Thermus sp. strain T2, cloned and expressed in E. coli JM109 DE3. The gene of Thermus thermophilus KNOUC112 $\beta$-galactosidase(KNOUC112$\beta$-gal) consisted of a 1,938 bp open reading frame, encoding a protein of 73 kDa that was composed of 645 amino acids. KNOUC112$\beta$-gal was expressed as dimer and trimer in E. coli JM109 (DE3) via pET-5b.

Fermentation Property by Novel Cellulolytic Lactic Acid Bacteria Enterococcus sp. TO-94 on Omija (Schizandra chinensis Baillon) (신규 섬유질 분해성 젖산균 Enterococcus sp. TO-94를 이용한 오미자의 발효 특성)

  • Ryu, Il-Hwan;Lee, Eoh-Jin;Kwon, Ji-Wung;Lee, Kang-Soo;Kwon, Tae-Oh
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.6
    • /
    • pp.429-438
    • /
    • 2010
  • The use of cellulolytic lactic acid bacteria in new method to prepare high nutrition complementary foods was investigated. For the screening of cellulolytic lactic acid bacteria, more than 1,150 bacterial colony were isolated from diluted infant feces samples. A typical strain which appeared the most excellent cellulolytic activities was identified novel acidophilic Enterococcus sp. TO-94 through the results of morphological, biochemical and chemotaxonomic characteristics and 16S rDNA sequencing. The optimal lactic acid fermentation conditions of Omija(Schizandra chinensis Baillon) by Enterococcus sp. TO-94 were as follows: pH and temperature were 3.0 and $37^{\circ}C$, respectively, and fermentation time was 20hrs. The fructose and glucose were major free sugar and the contents were 5.83 and 4.30 mg/g after fermentation, respectively. The contents of lactic acid and acetic acid were 9.84 mg/g and 2.08 mg/g after fermentation, respectively. The vitamin $B_1$, $B_2$, niacin, folic acid and C were major vitamin in the fermented broth, the contents were 1.5~3 times higher than those of initial fermentation time. Also, the contents of polyphenol and anthocyanine were 3.8 and 1.2 times higher than those of initial fermentation time.

Antimicrobial Properties of Turmeric (Curcuma longa L.) Rhizome-Derived ar-Turmerone and Curcumin

  • Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.559-563
    • /
    • 2006
  • The growth responses of six bacterial strains exposed to materials extracted from turmeric (Curcuma longa) rhizomes were examined using impregnated paper disk agar diffusion. Methanol extracts of turmeric rhizomes exhibited strong inhibitory activity against Clostridium perfringens and weak inhibitory activity toward Escherichia coli at 5 mg/disk. However, in tests conducted with Bifidobacterium adolescentis, B. bifidum, B. longum, and Lactobacillus casei, the methanol extract showed no inhibitory response. The biologically active constituent isolated from the turmeric rhizomes extracts was characterized as ar-turmerone using various spectroscopic analyses including EI-MS and NMR. The responses varied according to the dosage, chemicals, and bacterial strain tested. At 2 and 1 mg/disk, ar-turmerone strongly inhibited the growth of C. perfringens and moderately inhibited the growth of E. coli without any adverse effects on the growth of four lactic acid-bacteria. Of the commercially available compounds originating from turmeric rhizomes, curcumin exhibited strong and moderate growth inhibition against C. perfringens at 2 and 1 mg/disk, respectively, and weak growth inhibition against E. coli at 1 mg/disk. However, little or no activity was observed for borneol, 1,8-cineole, and sabinene against all six bacteria strains tested. The observed inhibitory activity of the turmeric rhizome-derived curcumin and ar-turmerone against C. perfringens and E. coli demonstrate one of the important pharmacological activities of turmeric rhizomes.

Isolation of a Nisin-Producing Lactococcus lactis Strain from Kimchi and Characterization of its nisZ Gene

  • Lee, Kwang-Hee;Moon, Gi-Seong;An, Jong-Yun;Lee, Hyong-Joo;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.389-397
    • /
    • 2002
  • Bacteriocin-producing lactic acid bacteria were isolated from kimchi. One isolate producing the most efficient bacteriocin was identified and named Lactococcus lactis B2, based on the biochemical properties and 16S rDNA sequences. The B2 bacteriocin inhibited many different Gram positive bacteria including Lactococcus, Lactobacillus, Leuconostoc, Enterococcus, Streptococcus, and Staphylococcus, but did not inhibit Gram-negative bacteria. The bacteriocin was maximally produced at temperatures between $25^{\circ}C\;and\;30^{\circ}C$ and at the initial pH of 7.0. Ninety $\%$ of the activity remained after 10 min of heat treatment at $121^{\circ}C,\;and\;100\%$, after 1 h exposure to organic solvents. The bacteriocin was purified from culture supernatant by ammonium sulfate precipitation, CM Sepharose column chromatography, ultrafiltration, and finally, by reverse-phase HPLC. A 1.58-kb fragment was amplified from B2 chromosome by using a primer set designed from the published nisA sequence. Sequencing result showed that the fragment contained the whole nisZ and 5' portion of nisB, whose gene product was involved in postmodification of nisin. The upstream sequence, however, was completely different from those of reported nisin genes.

Spatial and Temporal Distribution of a Biocontrol Bacterium Bacillus licheniformis N1 on the Strawberry Plants

  • Kong, Hyun-Gi;Lee, Hyoung-Ju;Bae, Ju-Young;Kim, Nam-Hee;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.238-244
    • /
    • 2010
  • Spatial and temporal distribution of Bacillus licheniformis N1 was investigated over time on the leaves, petioles and crowns of the strawberry plants. Bacterial population on the strawberry plants was quantified over time by selective plating. Bacterial population of N1 containing a plasmid pWH43G carrying green fluorescent protein (GFP) declined relatively faster on the plant surface as compared to the Strain N1 itself. However, this result was found to be enough to utilize the strain to visualize bacterial colonization on the plant surface. When B. licheniformis N1 was treated together with Silwet L-77 at 0.03%, the bacterial population on plant surface persisted for up to 7 days. B. licheniformis N1 (pWH43G) containing Silwet L-77 was applied on the strawberry plants and the GFP expressing bacteria were visualized by confocal laser scanning microscopy. Bacterial persistence was also investigated in a growth chamber and in a plastic house after N1 bioformulation treatment on the strawberry plant. The Strain N1 colonized three different tissues well and persisted over 3 to 5 days on the strawberry plants. They formed bacterial aggregates on plant surfaces for at least 3 days, resulting in a biofilm to resist fluctuating plant surface environment. However, the bacterial persistence dramatically declined after 7 days in all tested tissues in a plastic house. This study suggest that B. licheniformis N1 colonizes the strawberry plant surface and persists for a long time in a controlled growth chamber, while it can not persist over 7 days on the plant surface in a plastic house.

Screenin of Phospholipase D Producing Actinomycetes (방선균으로부터 Phospholipase D 생산균주의 탐색)

  • 손동화;심재용;윤석후
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.333-339
    • /
    • 1994
  • In order to screen microorganisms producing phospholipase D (PLD) [EC 3.1.4.4], culture broths of about 900 strains of soil bacteria were subjected to examine for the PLD activity. When the hydrolytic activity of PLD (H-activity) in the supernatant was determined, 64 strains produced PLD more than 0.3 unit/ml and all of them were actinomycetes. Among 26 culture broths tested, 6 ones had transphosphatidylation activity (T-activity) of 30~68%. When the strains except one were cultivated on 3 different media at 30$\circ$C for 3 days under aerobic condition, strain # 1090 on medium B (yeast extract 1%, peptone 1%, glucose 1.5%, glycerol 1%, CaCO$_{3}$ 0.4%, and pH 7.2) produced PLD with much higher H- and T-activity, which were 8.3 units/ml and 76.3%, respectively. Subsequently, time course of PLD production of the strain # 1090 during cultivation with aeration of 1 v/v/m and agitation of 400 rpm at 30$\circ$C for 5 days on medium B in jar fermentor was investigated. H-activty of PLD reached almost maximum (about 9 units/ml) after 32 hours and maximal T-activity was found to be about 80%.

  • PDF

Inhibition of Clostridium perfringens using Bacteriophages and Bacteriocin Producing Strains

  • Heo, Sunhak;Kim, Min Gon;Kwon, Mirae;Lee, Hee Soo;Kim, Geun-Bae
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.88-98
    • /
    • 2018
  • In this study, we isolated and characterized a bacteriocin-producing strain and two bacteriophages (P4, A3), showing antimicrobial effects against Clostridium perfringens, from chicken and swine feces by the spot-on-the lawn antagonism method. The selected strain was identified as Streptococcus hyointestinalis by 16S rRNA gene sequencing. The bacteriocin from the isolated strain exhibited strong inhibitory activity against four strains of C. perfringens and all the tested strains of Listeria monocytogenes, and the bacteriocin were highly heat- and pH-stable even at pH 2, pH 10 and $121^{\circ}C$ for 15 min. We also evaluated the combined effects of the isolated bacteriocin and phages. Combining the phage treatments and bacteriocin resulted in a synergetic effect compared with the phage or the bacteriocin alone. In addition, during the probiotic test, the bacteriocin-producing S. hyointestinalis B19 strain reduced the population of C. perfringens significantly. Treatment with S. hyointestinalis B19 and a cocktail of lytic bacteriophages eradicated the C. perfringens KCTC $3269^T$, completely. Consequently, the isolated bacteriocin and bacteriophages represent candidates for effective biocontrol of C. perfringens, and bacteriocin-producing S. hyointestinalis B19 is a potential probiotic candidate for use in domestic animals.

Multilocus sequence analysis of the genus Aliivibrio: Identification and phylogeny of Aliivibrio species isolated from cultured walleye pollock (Gadus chalcogrammus) in Korea

  • Nam, U-Hwa;Seo, Hyun-Joon;Jang, Su-Rim;Kim, Mi-Ri;Kim, Jeong-Ho
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.69-80
    • /
    • 2019
  • We performed MLSA (multilocus sequence analysis) and phenotypic characterization of Aliivibrio species isolated from walleye pollock (Gadus chalcogrammus) maintained in 3 different facilities of Gangwon Province, the east coast of Korea. Of 38 Aliivibrio species identified by 16S rDNA sequences, 12 strains were randomly selected and MLSA was conducted with 5 house-keeping genes (gapA, gyrB, pyrH, recA and rpoA) and 16S rDNA gene. Phylogenetic analysis and homology of the concatenated sequences (4,580 bp) with other Vibrionaceae genera revealed that 4 strains (GNGc16.1, YYGc16.1, YYGc16.2, GSGc18.1) were identified as Aliivibrio logei and one strain (GSGc16.1) as A. wodanis. One strain (GSGc17.1) was tentatively identified as A. logei, but needs further analysis because it did not belong to the same clade with A. logei type strain. 6 strains (GSGc17.2, GNGc16.2, GSGc16.2, GSGc17.3, GSGc18.2, GSGc17.4) need further investigation as potential novel species. Either phenotypic characterization or 16S rDNA sequence alone did not provide enough information for identification of Aliivibrio strains at the species level. A. logei and A. wodanis are generally known as non-pathogenic bacteria, but also known as opportunistic or secondary pathogens of cold water fishes. Cares should be taken to prevent potential outbreaks due to these bacteria, although there was no outbreaks during the sampling period.