• Title/Summary/Keyword: bacteria diversity

Search Result 527, Processing Time 0.024 seconds

Diversity of Nitrifying and Denitrifying Bacteria in SMMIAR Process (완전침지형 회전매체공정 내 질산화 및 탈질 관련 미생물의 군집 분포)

  • Quan, Zhe-Xue;Lim, Bong-Su;Kang, Ho;Yoon, Kyung-Yo;Yoon, Yeo-Gyo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1014-1021
    • /
    • 2006
  • SMMIAR (Submerged Moving Media Intermittent Aeration Reactor) Process is a very efficient system which remove ammonia to nitrogen gas in one reactor. In this study, we determined the diversity of ammonia oxidizing bacteria and denitrifying bacteria using specific PCR amplification and the clone library construction. An ammonia monooxygenase gene(amoA) was analyzed to investigate the diversity of nitrifiers. Most of amoA gene fragments (27/29, 93%) were same types and they are very similar (>99%) to the sequences of Nitrosomonas europaea and other clones isolated from anoxic ammonia oxidizing reactors. ANAMMOX related bacteria have not determined by specific PCR amplification. A nitrite reductase gene(nirK) was analyzed to investigate the diversity of denitrifying bacteria. About half (9/20, 45%) of denitrifiers were clustered with Rhodobacter and most of others were clustered with Mesorhizobium (6/20, 30%) and Rhizobium (3/20, 15%). All of these nirK gene clones were clustered in alpha-Proteobacteria and this result is coincide with other system which also operate nitrification and denitrification in one reactor. The molecular monitoring of the population of nitrifiers and denitrifiers would be helpful for the system stabilization and scale-up.

Sampling and Selection Factors that Enhance the Diversity of Microbial Collections: Application to Biopesticide Development

  • Park, Jun-Kyung;Lee, Seung-Hwan;Lee, Jang-Hoon;Han, Songhee;Kang, Hunseung;Kim, Jin-Cheol;Kim, Young Cheol;McSpadden Gardener, Brian
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.144-153
    • /
    • 2013
  • Diverse bacteria are known to colonize plants. However, only a small fraction of that diversity has been evaluated for their biopesticide potential. To date, the criteria for sampling and selection in such bioprospecting endeavors have not been systematically evaluated in terms of the relative amount of diversity they provide for analysis. The present study aimed to enhance the success of bioprospecting efforts by increasing the diversity while removing the genotypic redundancy often present in large collections of bacteria. We developed a multivariate sampling and marker-based selection strategy that significantly increase the diversity of bacteria recovered from plants. In doing so, we quantified the effects of varying sampling intensity, media composition, incubation conditions, plant species, and soil source on the diversity of recovered isolates. Subsequent sequencing and high-throughput phenotypic analyses of a small fraction of the collected isolates revealed that this approach led to the recovery of over a dozen rare and, to date, poorly characterized genera of plant-associated bacteria with significant biopesticide activities. Overall, the sampling and selection approach described led to an approximately 5-fold improvement in efficiency and the recovery of several novel strains of bacteria with significant biopesticide potential.

Characterization of the Microbial Diversity in a Korean Solar Saltern by 16S rRNA Gene Analysis

  • Park, Soo-Je;Kang, Cheol-Hee;Rhee, Sung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1640-1645
    • /
    • 2006
  • We studied the diversity of the halophilic archaea and bacteria in crystallizer ponds of a Korean solar saltern by analyzing 16S rRNA gene libraries. Although diverse halophilic archaeal lineages were detected, the majority (56%) were affiliated with the uncultured and cultured Halorubrum group. Halophilic archaea that have been frequently observed in solar saltern environments previously, such as Halogeometricum, Halococcus, Haloarcula, and Haloferax, were not detected in our samples. The majority of clones (53%) belonged to the Cytophaga-Flavobacterium-Bacteroides and ${\alpha}-,\;{\gamma}-,\;and\;{\delta}-Proteobacteria$ groups, with 47% of the clones being affiliated with ${\gamma}-Proteobacteria$. We also identified new ${\delta}-Proteobacteria$-related bacteria that have not been observed in hypersaline environments previously. Our data show that the diversity of the halophilic archaea and bacteria in our Korean saltern differs from that of solar salterns found in other geographic locations. We also showed by quantitative real-time PCR analysis that bacteria can form a significant component of the microbial community in solar salterns.

Effects of Acidification on the Changes of Microbial Diversity in Aquatic Microcosms

  • Young-Beom Ahn;Hong-Bum Cho;Byung Re Min;Yong-Keel Choi
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.153-159
    • /
    • 1999
  • In an artificial pH-gradient batch culture system, the effects of acidification on the species composition of a heterotrophic bacterial community were analyzed. As a result of this study, it was found that total bacteria numbers were not affected by acidification and that the population of hetero-trophic bacteria decreased as pH became lower. The heterotrophic bacteria isolated from the entire pH gradient were 12 genera and 22 species. Among them, 64% were gram negative and 36% were gram positive bacteria. As pH decreased, the distribution rate of gram negative bacteria increased while that of gram positive bacteria decreased. The diversity of genera decreased from 13 to 5 as pH decreased from 7 to 3. The G+C content of all of the 202 isolated strains varied from 22.8 to 77.0%, and increased in interspecies of same genus as pH decreased. As a result of clustering analysis, the diversity index of species ranged from 1.13 to 2.37, and it had lower indices as pH decreased. In order to evaluate the diversity of numbers of sample of different size, a rarefaction method was used to analyze the expected number of species appearance according to pH. The statistical significance of species diversity was verified by the fact that the number decreased at lower pH.

  • PDF

Bacterial Diversity in the Mud Flat of Sunchon Bay, Chunnam Provice, by 16S rRNA Gene Analysis (16S rRNA 유전자 분석에 의한 전남 순천만 갯벌의 세균 다양성)

  • 이명숙;홍순규;이동훈;배경숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.137-144
    • /
    • 2001
  • In order to investigate the diversity of bacterial community in the mud flat of Sunchon Bay, Chunnam province, diversity of amplified 16S rDNA was examined. Total DNA was extracted from sediment soils and 16S rDNAs were amplified using PCR primers based on the universally conserved sequences in bacteria. Clonal libraries were constructed and 111 clones were examined by amplified rDNA restriction analysis (ARDRA) using HaeIII. Clones were clustered based on restriction patterns using computer program, GelCompar II. One hundred different RFLP types were detected from 111 clones. The 20 clones were selected and sequenced according to dendrograms derived from ARDRA, to cover most of the bacterial diversity in the clone libraries. None of the clones were identical to any representatives in the Ribosomal Database Project small subunit RNA databases and GenBank. All sequences showed between 77 and 96.8% similarity to the known 16s rRNA sequence from cultured organisms. The 20 clones sequenced fell into seven major lineages of the domain Bacteria: alpha-, delta-, gamma-Proteobacteria, low G+C Gram positive bacteria, high G+C Gram positive bacteria, Sphingobacteria (Cytophaga) and Cyanobacteria (chloroplast). Among the clones, the Proteobacteria were dominant.

  • PDF

Effects on the Soil Microbial Diversity and Growth of Red Pepper by Treated Microbial Agent in the Red Pepper Field (경작지토양에서 미생물제제가 미생물의 다양성과 고추의 생육에 미치는 영향)

  • An, Chang-Hwan;Lim, Jong-Hui;Kim, Yo-Hwan;Jung, Byung-Kwon;Kim, Jin-Won;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • We investigated the effects on soil microbial diversity and the growth promotion of red pepper resulting from inoculation with a microbial agent composed of Bacillus subtilis AH18, B. licheniformis K11 and Pseudomonas fluorescens 2112 in a red pepper farming field. Photosynthetic bacteria, Trichoderma spp., Azotobacter spp., Actinomycetes, nitrate oxidizing bacteria, nitrite oxidizing bacteria, nitrogen fixing bacteria, denitrifying bacteria, phosphate solubilizing bacteria, cellulase producing bacteria, and urease producing bacteria are all indicator microbes of healthy soil microbial diversity. The microbial diversity of the consortium microbial agent treated soil was seen to be 1.1 to 14 times greater than soils where other commercial agent treatments were used, the latter being the commercial agent AC-1, and chemical fertilizer. The yield of red pepper in the field with the treated consortium microbial agent was increased by more than 15% when compared to the other treatments. Overall, the microbial diversity of the red pepper farming field soil was improved by the consortium microbial agent, and the promotion of growth and subsequent yield of red pepper was higher than soils where the other treatments were utilized.

Phylogenetic Analysis of Culturable Arctic Bacteria

  • Lee Yoo Kyung;Kim Hyo Won;Kang Sung-Ho;Lee Hong Kum
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.26-33
    • /
    • 2003
  • We isolated and identifed culturable Arctic bacteria that have inhabited around Korean Arctic Research Station Dasan located at Ny-Alsund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. The pure colonies were inoculated into nutrient liquid media, genomic DNA was extracted, and phylogenetic analysis was performed on the basis of 16S rDNA sequences. Out of total 227 strains, 198 strains were overlapped or unidentified, and 43 bacteria were finally identified: 31 strains belonged to Pseudomonas, 7 strains Arthrobacter, two Flavobacterium sp., an Achromobacter sp., a Pedobacter sp., and a Psychrobacter sp. For isolation of diverse bacteria, we need more effective transport method than 3M petri-films, which were used for convenience of transportation that was restricted by volume. We also need to use other culture media than nutrient media. We expect these Arctic bacteria can be used for screening to develop new antibiotics or industrial enzymes that are active at low temperature.

  • PDF

Phylogenetic Analysis of Culturable Arctic Bacteria

  • Lee, Yoo-Kyung;Kim, Hyo-Won;Cho, Kyeung-Hee;Kang, Sung-Ho;Lee, Hong-Kum;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.51-58
    • /
    • 2004
  • We isolated and identified culturable Arctic bacteria that had inhabited soils around the Korean Arctic Research Station Dasan located at Ny-Alsund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. The collected soils were diluted in distilled water; the diluted soil-water was spread on 3M petri-films at Dasan Station. The petri-films were transported to the laboratory at KORDI, and cultured at $4^{\circ}C$. Colonies grown on the petri-films were subsequently cultured on nutrient agar plates at $4^{\circ}C$ every 7 days. The pure colonies were inoculated into nutrient liquid media, genomic DNA was extracted, and phylogenetic analysis was performed on the basis of 165 rDNA sequences. A total of 227 strains of bacteria were isolated. Among them, 16S rDNA sequences of 185 strains were identical with those of known strains isolated in this study, and 42 strains were finally identified. Phylogenetic analysis using 16S rDNA indicated that the 30 strains belonged to Pseudomonas, 7 strains to Arthrobacter, two strains to Flavobacterium, and the remaining to Achromobacter, Pedobacter, and Psychrobacter. Among the 42 strains, 14 bacteria produced protease: they were 6 strains of Pseudomonax, 4 strains of Arthrobater, an Achromobacter strain, 2 strains of Flavobacterium, and a Pedohacter strain. We expect these Arctic bacteria can be used for screening to develop new industrial enzymes that are active at low temperatures.

Study on Oxytetracycline Resistant Bacteria in the Surface Water Environment (하천에서의 Oxytetracycline 내성주에 관한 연구)

  • Kim, Young Jin;Kim, Jong Oh
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.1
    • /
    • pp.40-48
    • /
    • 2015
  • Objectives: This study aims to understand the concentration, diversity, and antibiotic characteristics of oxytetracycline resistant bacteria present in a surface water environment. Methods: Water sampling was performed in Cheongmi Stream in Gyeonggi-do, Korea in February and August 2014. Water samples collected from two sites were plated in triplicate on tryptic soy agar plates with 30 mg/L of oxytetracycline. Oxytetracycline resistant bacteria were selected from surface water in Cheongmi Stream and were subjected to 16S rDNA analysis for oxytetracycline resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Results from this study indicate that the dominant resistant organisms in this aquatic environment are from family Acinetobacter and family Aeromonas. As to culturable heterotrophic bacteria, Oxytetracycline resistant bacteria were present 0.45-0.93% during winter and 0.08-0.38% during summer. Most oxytetracycline resistant bacteria exhibited resistance to more than ten of the antibiotics studied. The diversity of oxytetracycline resistant bacteria in winter was higher than in summer. Conclusion: Most of these resistant bacteria are Gram negative and are closely related to pathogenic species. These results suggest that increasing multi-antibiotic resistant bacteria in the surface water environment has a close relation to the reckless use of antibiotics in livestock.

The Phylogenetic Affiliation of an Uncultured Population of Ammonia-Oxidizing Bacteria Harboring Environmental Sequences of amoA Cluster-3

  • Hong, Jin-Kyung;Cho, Jae-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.567-573
    • /
    • 2011
  • We investigated the phylogenetic diversity of ammoniaoxidizing bacteria (AOB) in Yellow Sea continental shelf sediment by the cloning and sequencing of PCR-amplified amoA and 16S rRNA genes. Phylogenetic analysis of the amoA-related clones revealed that the diversity of AOB was extremely low at the study site. The majority (92.7%) of amoA clones obtained belonged to a single cluster, environmental amoA cluster-3, the taxonomic position of which was previously unknown. Phylogenetic analysis on AOB-specific 16S rRNA gene sequences also demonstrated a very low diversity. All of the cloned 16S rRNA gene sequences comprised a single phylotype that belonged to the members of uncultured Nitrosospira cluster-1, suggesting that AOB belonging to the uncultured Nitrosospira cluster-1 could carry amoA sequences of environmental amoA cluster-3.