Browse > Article
http://dx.doi.org/10.4014/jmb.1101.01021

The Phylogenetic Affiliation of an Uncultured Population of Ammonia-Oxidizing Bacteria Harboring Environmental Sequences of amoA Cluster-3  

Hong, Jin-Kyung (Institute of Environmental Sciences and Department of Environmental Sciences, Hankuk University of Foreign Studies)
Cho, Jae-Chang (Institute of Environmental Sciences and Department of Environmental Sciences, Hankuk University of Foreign Studie)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.6, 2011 , pp. 567-573 More about this Journal
Abstract
We investigated the phylogenetic diversity of ammoniaoxidizing bacteria (AOB) in Yellow Sea continental shelf sediment by the cloning and sequencing of PCR-amplified amoA and 16S rRNA genes. Phylogenetic analysis of the amoA-related clones revealed that the diversity of AOB was extremely low at the study site. The majority (92.7%) of amoA clones obtained belonged to a single cluster, environmental amoA cluster-3, the taxonomic position of which was previously unknown. Phylogenetic analysis on AOB-specific 16S rRNA gene sequences also demonstrated a very low diversity. All of the cloned 16S rRNA gene sequences comprised a single phylotype that belonged to the members of uncultured Nitrosospira cluster-1, suggesting that AOB belonging to the uncultured Nitrosospira cluster-1 could carry amoA sequences of environmental amoA cluster-3.
Keywords
Ammonia-oxidizing bacteria; amoA; phylogeny;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Holmes, A. J., A. Costello, M. E. Lidstrom, and J. C. Murrell. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203-208.   DOI   ScienceOn
2 Hunter, E. M., H. J. Mills, and J. E. Kostka. 2006. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl. Environ. Microbiol. 72: 5689-5701.   DOI   ScienceOn
3 Jeong, K. S., J. H. Cho, S. R. Kim, S. Hyun, and U. Tsunogai. 2004. Geophysical and geochemical observations on actively seeping hydrocarbon gases on the south-eastern Yellow Sea continental shelf. Geo-Mar. Lett. 24: 53-62.   DOI   ScienceOn
4 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI   ScienceOn
5 Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163.   DOI   ScienceOn
6 Magalhaes, C. M., S. B. Joyeb, R. M. Moreiraa, W. J. Wiebea, and A. A. Bordaloa. 2005. Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal. Water Res. 39: 1783-1794.   DOI   ScienceOn
7 Matulewich, V. A., P. F. Strom, and M. S. Finstein. 1975. Length of incubation for enumerating nitrifying bacteria present in various environments. Appl. Microbiol. 29: 265-268.
8 McCaig, A. E., C. J. Phillips, J. R. Stephen, G. A. Kowalchuk, S. M. Harvey, R. A. Herbert, T. M. Embley, and J. I. Prosser. 1999. Nitrogen cycling and community structure of proteobacterial beta-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl. Environ. Microbiol. 65: 213-220.
9 McTavish, H., J. A. Fuchs, and A. B. Hooper. 1993. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J. Bacteriol. 175: 2436-2444.   DOI
10 Mosier, A. C. and C. A. Francis. 2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ. Microbiol. 10: 3002-3016.   DOI   ScienceOn
11 Bano, N. and J. T. Hollibaugh. 2000. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean. Appl. Environ. Microbiol. 66: 1960-1969.   DOI   ScienceOn
12 Bayer, K., S. Schmitt, and U. Hentschel. 2008. Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ. Microbiol. 10: 2942-2955.   DOI   ScienceOn
13 Beman, J. M. and C. A. Francis. 2006. Diversity of ammoniaoxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl. Environ. Microbiol. 72: 7767-7777.   DOI   ScienceOn
14 Francis, C. A., G. D. O'Mullan, and B. B. Ward. 2003. Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1: 129-140.   DOI   ScienceOn
15 Bernhard, A. E., T. Donn, A. E. Giblin, and D. A. Stahl. 2005. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ. Microbiol. 7: 1289-1297.   DOI   ScienceOn
16 Bothe, H., G. Jost, M. Schloter, B. B. Ward, and K. Witzel. 2000. Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24: 673-690.   DOI   ScienceOn
17 Boynton, W. R. and W. M. Kemp. 1985. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Mar. Ecol. Prog. Seri. 23: 45-55.
18 Freitag, T. E., L. Chang, and J. I. Prosser. 2006. Changes in the community structure and activity of betaproteobacterial ammoniaoxidizing sediment bacteria along a freshwater-marine gradient. Environ. Microbiol. 8: 684-696.   DOI   ScienceOn
19 Freitag, T. E. and J. I. Prosser. 2003. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl. Environ. Microbiol. 69: 1359-1371.   DOI   ScienceOn
20 Freitag, T. E. and J. I. Prosser. 2004. Differences between betaproteobacterial ammonia-oxidizing communities in marine sediments and those in overlying water. Appl. Environ. Microbiol. 70: 3789-3793.   DOI   ScienceOn
21 Teske, A., E. Alm, J. M. Regan, S. Toze, B. E. Rittmann, and D. A. Stahl. 1994. Evolutionary relationships among ammoniaand nitrite-oxidizing bacteria. J. Bacteriol. 176: 6623-6630.   DOI
22 Ashelford, K. E., N. A. Chuzhanova, J. C. Fry, A. J. Jones, and A. J. Weightman. 2006. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl. Environ. Microbiol. 72: 5734-5741.   DOI   ScienceOn
23 O'Mullan, G. D. and B. B. Ward. 2005. Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, California. Appl. Environ. Microbiol. 71: 697-705.   DOI   ScienceOn
24 Purkhold, U., A. Pommerening-Roser, S. Juretschko, M. C. Schmid, H. P. Koops, and M. Wagner. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 66: 5368-5382.   DOI   ScienceOn
25 Purkhold, U., M. Wagner, G. Timmermann, A. Pommerening- Roser, and H. P. Koops. 2003. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: Extension of the dataset and proposal of a new lineage within the nitrosomonads. Int. J. Syst. Evol. Microbiol. 53: 1485-1494.   DOI   ScienceOn
26 Santoro, A. E., C. A. Francis, N. R. de Sieyes, and A. B. Boehm. 2008. Shifts in the relative abundance of ammoniaoxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ. Microbiol. 10: 1068-1079.   DOI   ScienceOn
27 Schwartz, R. M. and M. O. Dayhoff. 1979. Protein and nucleic acid sequence data and phylogeny. Science 205: 1038-1039.   DOI
28 Stephen, J. R., A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley. 1996. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62: 4147-4154.
29 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI   ScienceOn
30 Urakawa, H., Y. Tajima, Y. Numata, and S. Tsuneda. 2008. Low temperature decreases the phylogenetic diversity of ammoniaoxidizing archaea and bacteria in aquarium biofiltration systems. Appl. Environ. Microbiol. 74: 894-900.   DOI   ScienceOn
31 Voytek, M. A. and B. B. Ward. 1995. Detection of ammoniumoxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl. Environ. Microbiol. 61: 1444-1450.