• 제목/요약/키워드: bacteria community

검색결과 677건 처리시간 0.028초

미생물연료전지에서 공급기질에 따른 전기발생량 및 미생물 군집구조 비교 (Comparison of Electricity Generation and Microbial Community Structure in MFCs Fed with Different Substrates)

  • 유재철;조해인;조순자;이태호
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.608-613
    • /
    • 2010
  • Electricity generation of microbial fuel cells (MFC) is greatly affected by the kind of feed substrates because substrates would change microbial community of electrochemically active bacteria (EAB) able to transfer electrons to electrode. The effect of different substrates on electricity generation and microbial community of MFC was investigated. Two-chamber MFCs fed with acetate (A-MFC), butyrate (B-MFC), propionate (P-MFC), glucose (G-MFC) and a mixture (M-MFC) of the 4 substrates (acetate : butyrate : propionate : glucose = 1 : 1 : 1 : 1 as $COD_{Cr}$ base) were operated under continuous mode. The maximum power density was found from the M-MFC ($190W/m^3$) which showed the lowest internal resistance ($89{\Omega}$). The maximum power densities of the pure substrates feed MFCs were in order of A-MFC ($25W/m^3$), P-MFC ($21W/m^3$), B-MFC ($20W/m^3$) and G-MFC ($9W/m^3$). In DGGE analysis, the microbial community structure in suspension was quite different from each others depending on feed substrates, while the community structure in the biofilm was relatively similar regardless of the substrates. This result suggests that the feed substrates would affect the microbial community of suspended growth bacteria than attached growth bacteria resulting in difference of electricity generation in MFCs.

2016년 한국 경기도의 3월 황사기간 동안 부유세균 군집과 다양성에 대한 메타지노믹 분석 (Metagenomic Analysis of Airborne Bacteria Community and Diversity in Gyeonggi-do, Korea, during March 2016, Asian Dust Event)

  • 장준형;김지혜;배경선;김정명;이원석;정현미;박상정;서태근
    • 한국환경보건학회지
    • /
    • 제43권6호
    • /
    • pp.491-498
    • /
    • 2017
  • Objective: Bacterial abundance and community compositions have been examined in Asian dust events, clarifying their impacts on public health. This study aims to determine the bacterial community compositions and viable bacteria in Asian dust particles in the Asian dust or non-Asian dust event of March 2016. Methods: The dust samples were collected using the high volume air sampler or high volume cascade impactor, and bacterial 16S rRNA genes were amplified using PCR, followed by pyrosequencing. Bacterial diversity index, richness estimate and community composition in the particles were analyzed from the sequencing data using Mothur software. Results: The results showed that the diversity and richness during Asian dust events were higher than them in non-Asian dust events. The total bacterial community analysis showed that at the phylum Proteobacteria, Actinobacteria and Firmicutes were the most dominant of Asian dust events and non-Asian dust events. In addition, the bacterial colony counts were higher during Asian dust event, comparing with non-Asian dust event. Conclusions: This study showed that bacterial community and richness of Asian dust samples was more complex and higher than non-Asian dust samples in Gyeonggi-do, Korea, which could affect public health and environment. Thus, the continuous monitoring of Asian dust could be an alternative for managing airborne bacteria.

FAME Analysis to Monitor Impact of Organic Matter on Soil Bacterial Populations

  • Kim, Jong-Shik;Joo, Jin-Bee;Weon, Hang-Yeon;Kang, Chang-Seong;Lee, Si-Kyung;Yahng, Chahng-Sool
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.382-388
    • /
    • 2002
  • In order to assess the effects of organic fertilizer on soil microbial community structure and diversity in the greenhouse fields, fatty acid methyl ester (FAME) was analyzed by the MIDI (Microbial ID, Inc., Newark, DE, U.S.A.) system and enumerations were performed. In relation to bacterial division of each sample, low GC Gram-positive bacteria were predominant among bacteria cultured on aerobic bacteria media. On the other hand, alpha subdivision was predominant on proteobacteria of control and OM (organic matter) 1 treated plot, and Flavobacterium spp. existed in OM2 plot on crystal violet media of all samples. Shannon-weaver Index (H) of OM1 plot varied most by 1.9 and 5.0 among bacteria cultured on aerobic bacteria media and crystal violet media, respectively. Our results revealed that addition of the organic wastes to soil led to a highly diverse microbial community, but the excessive amounts of organic and mineral fertilizer applied in the greenhouse fields produced excess nutrients in soil and led to simplification on bacterial populations.

Phylogenetic Diversity of Bacteria in an Earth-Cave in Guizhou Province, Southwest of China

  • Zhou, Jun-Pei;Gu, Ying-Qi;Zou, Chang-Song;Mo, Ming-He
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.105-112
    • /
    • 2007
  • The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0 %), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment.

Impacts of Soil Organic Matter on Microbial Community of Paddy Soils in Gyeongnam Province

  • Son, Daniel;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Ok, Yong Sik;Lee, Young Han
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.783-788
    • /
    • 2016
  • Agricultural management of paddy soil depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 paddy soils in Gyeongnam Province by fatty acid methyl ester (FAME). The average of microbial communities in paddy soils were 32.2% of total bacteria, 16.7% of Gram-negative bacteria, 12.9% of Gram-positive bacteria, 2.0% of actinomycetes, 14.9% of fungi, and 1.3% of arbuscular mycorrhizal fungi. The communities of total bacteria (34.9%) and Gram-negative bacteria (19.4%) in soils with $30{\sim}35g\;kg^{-1}$ of organic matter were significantly larger than those in soils with other organic matter levels. However, soils with $20{\sim}30g\;kg^{-1}$ of organic matter had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ as compared with soils with $30{\sim}35g\;kg^{-1}$ of organic matter, indicating microbial stress decreased (p < 0.05). In principal component analyses of soil microbial communities, Gram-negative bacteria should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the two different organic matter levels in paddy fields. Thus, soils containing $20{\sim}30g\;kg^{-1}$ of organic matter were responsible for strong effect on microbial biomass and stress in paddy fields.

Microbial Community Structure of the Active Layer Soil from Resolute, Canadian High Arctic

  • Kim, Ok-Sun;Kim, Hye Min;Lee, Hong Kum;Lee, Yoo Kyung
    • 한국기후변화학회지
    • /
    • 제5권3호
    • /
    • pp.249-256
    • /
    • 2014
  • Permafrost is frozen soil below $0^{\circ}C$ for two or more years. Surface of permafrost is called as active layer that seasonally thaws during the summer. Although the thawing of permafrost may deepen the active layer and consequently increase the microbial activity, the microbial community structure in this habitat has not yet been well described. In this study, we presented bacterial and archaeal diversity in the active layer soil from Resolute, Canada using pyrosequencing analysis. The soil sample was collected from the surface of the marsh covered with moss and Carex. A total of 7,796 bacterial reads for 40 phyla and 245 archaeal reads for 4 phyla were collected, reflecting the high diversity of bacteria. Predominant bacterial groups were Proteobacteria (37.7%) and Bacteroidetes (30.0%) in this study. Major groups in Archaea were Euryarchaeota (51.4%) and Thaumarchaeota (46.1%). Both methane producing archaea and consuming bacteria were detected in this study. Although it might be difficult to characterize microbial community with only one sample, it could be used for the basis of assessing the relative importance of the specific groups with a high resolution on the bacterial and archaeal community in this habitat.

Bacterial Community Migration in the Ripening of Doenjang, a Traditional Korean Fermented Soybean Food

  • Jeong, Do-Won;Kim, Hye-Rim;Jung, Gwangsick;Han, Seulhwa;Kim, Cheong-Tae;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.648-660
    • /
    • 2014
  • Doenjang, a traditional Korean fermented soybean paste, is made by mixing and ripening meju with high salt brine (approximately 18%). Meju is a naturally fermented soybean block prepared by soaking, steaming, and molding soybean. To understand living bacterial community migration and the roles of bacteria in the manufacturing process of doenjang, the diversity of culturable bacteria in meju and doenjang was examined using media supplemented with NaCl, and some physiological activities of predominant isolates were determined. Bacilli were the major bacteria involved throughout the entire manufacturing process from meju to doenjang; some of these bacteria might be present as spores during the doenjang ripening process. Bacillus siamensis was the most populous species of the genus, and Bacillus licheniformis exhibited sufficient salt tolerance to maintain its growth during doenjang ripening. Enterococcus faecalis and Enterococcus faecium, the major lactic acid bacteria (LAB) identified in this study, did not continue to grow under high NaCl conditions in doenjang. Enterococci and certain species of coagulase-negative staphylococci (CNS) were the predominant acid-producing bacteria in meju fermentation, whereas Tetragenococcus halophilus and CNS were the major acid-producing bacteria in doenjang fermentation. We conclude that bacilli, LAB, and CNS may be the major bacterial groups involved in meju fermentation and that these bacterial communities undergo a shift toward salt-tolerant bacilli, CNS, and T. halophilus during the doenjang fermentation process.

Analysis of Bacterial Diversity and Communities Associated with Tricholoma matsutake Fruiting Bodies by Barcoded Pyrosequencing in Sichuan Province, Southwest China

  • Li, Qiang;Li, Xiaolin;Chen, Cheng;Li, Shuhong;Huang, Wenli;Xiong, Chuan;Jin, Xing;Zheng, Linyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.89-98
    • /
    • 2016
  • Endophytes play an important role in the growth and development of the host. However, the study of endophytes is mostly focused on plants, and reports on bacteria associated with fungi are relatively rare. We studied the bacteria associated with fruiting bodies of Tricholoma matsutake picked from seven main T. matsutake-producing areas in Sichuan, China, by barcoded pyrosequencing. About 8,272 reads were obtained per sample, representing 40 phyla, 103 classes, and 495 genera of bacteria and archaea, and 361-797 operational taxonomic units were observed at a 97% similarity level. The bacterial community was always both more abundant and more diverse than the archaeal community. UniFrac analysis showed there were some difference of bacterial communities among the samples sites. Three bacterial phyla, Proteobacteria, Bacteroidetes, and Firmicutes, were dominant in all samples. Correlation analysis showed there was a significant correlation between some soil properties and bacterial community associated with T. matsutake. This study demonstrated that the bacteria associated with T. matsutake fruiting bodies were diversified. Among these bacteria, we may find some strains that can promote the growth of T. matsutake.

Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems

  • Ki, Bo-Min;Kim, Yu Mi;Jeon, Jun Min;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권12호
    • /
    • pp.2199-2210
    • /
    • 2017
  • Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter, and Brevundimonas. However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium, and Caldicoprobacter. Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.

입상활성탄 부착세균과 염소소독 연구 (Bacterial attachment on granular activated carbon and effect of chlorine disinfection)

  • 백영애;조우현;홍병의;최영준;안승구
    • 상하수도학회지
    • /
    • 제23권3호
    • /
    • pp.339-344
    • /
    • 2009
  • The authors investigated the bacterial community attached to granular activated carbon(GAC) particles and the susceptibility of the community to chlorine disinfection. The study was carried out at the G Water Treatment Plant in Seoul, which was in full-scale operation. Bacteria attached to the surface of GAC increased gradually with treatment from $0.4{\times}106{\sim}8.5{\times}106 CFU/g$. TOC removal was under 1.0 mg/L due to increased bacterial community on the surface of GAC. It was found that TOC removal was closely related with physical and biological parameters such as pore volume and the number of attached bacteria. When the washed and the attached cells were disinfected with 1.0mg/L of chlorine for 1 hour, the washed cells with chlorination could be controlled, but the number of the attached cells increased gradually. The results suggest a possibility that the treatment and disinfection barriers can be penetrated and pathogenic bacteria may break into the drinking water supplying system.