• Title/Summary/Keyword: backward motion control

Search Result 47, Processing Time 0.02 seconds

A Basic Study of Hexapod Walking Robot (6족 보행로봇에 관한 기초연구)

  • Kang, D.H.;Min, Y.B.;Iida, M.;Umeda, M.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.339-347
    • /
    • 2007
  • A hexapod walking robot had been developed for gathering information in the field. The developed robot was $260{\times}260{\times}130$ ($W{\times}L{\times}H$, mm) in size and 14.7 N in weight. The legs had nineteen degrees of freedom. A leg has three rotational joints actuated by small servomotors. Two servomotors placed at ankle and knee played the roles of vertical joint for up and down motions of the leg and the other one placed at coxa played the role of horizontal joint for forward and backward motions. In addition, a servomotor placed at thorax between the front legs and the middle legs played the role of vertical joint for pumping the two front legs to climb stair or inclination. Walking motion of the robot was executed by tripod gait. The robot was controlled by manual remote-controller communicated by an infrared ray. Two controllers were equipped to control the walking of the robot. The sub-controller using PIC microcomputer (Microchips, PIC16F84A) received the 16 bit command signal from the manual remote controller, decoded it to 8bit and transmitted it to the main microcomputer (RENESAS, SH2/7045), which controlled the 19 servomotors using the PWM command signals. Walking speeds were controlled by adjusting the period of command cycle and the stride. Forward walking speed were within 100 cm/min to 300 cm/min. However, experimental walking speed had the error of 4-40 cm/min to compare with the theoretical one, because of slippage of the leg and the circular arc motion of servomotor of coxa.

Development of the Multi-stage System with 4 DOF (4자유도 모션이 가능한 복합 무대 시스템 개발)

  • Lee, Sang-Won;Won, Daehee;Lee, Sulhee
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.5
    • /
    • pp.18-26
    • /
    • 2015
  • In this paper, we presented a design and control method of multi-stage with wagon and lift stage. Multi-stage system has 4 degree-of-freedom(DOF), i.e., forward/backward/left/right/rotate and up/down motion. Wagon mechanism in the type of two wheel and steering is proposed in order to improve for the maneuverability compared to the existing differential-type wagons. Also, the lift mechanism is designed by interlocking type in order to make the maximum height bigger than 10 times of the original height. We also proposed a path planning algorithm. The performance of the propped system is validated via multi motion experiments, so that the multi-stage system is useful for various performances production.

Dynamic Object Tracking of a Quad-rotor with Image Processing and an Extended Kalman Filter (영상처리와 확장칼만필터를 이용한 쿼드로터의 동적 물체 추종)

  • Kim, Ki-jung;Yu, Ho-Yun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.641-647
    • /
    • 2015
  • This paper proposes a new strategy for a quad-rotor to track a moving object efficiently by using image processing and an extended Kalman filter. The goal of path planning for the quad-rotor is to design an optimal path from the start point to the destination point. To lengthen the freight time of the quad-rotor, an optimal path is required to reduce the energy consumption. To track a moving object, the mark signed on the moving object has been detected by a camera mounted first on the quad-rotor. The center coordinates of the mark and its area are calculated through the blob analysis which is one type of image processing. The mark coordinates are utilized to obtain information on the motion direction and the area of the mark is utilized to recognize whether the object moves backward or forward from the camera on the quad-rotor. In addition, an extended Kalman filter has been applied to predict the direction and speed of the dynamically moving object. Through these schemes, it is aimed that the quad-rotor can track the dynamic object efficiently in terms of flight distance and time. Through the two different route freights of the quad-rotor, the performance of the proposed system has been demonstrated.

Multiple Vehicle Recognition based on Radar and Vision Sensor Fusion for Lane Change Assistance (차선 변경 지원을 위한 레이더 및 비전센서 융합기반 다중 차량 인식)

  • Kim, Heong-Tae;Song, Bongsob;Lee, Hoon;Jang, Hyungsun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • This paper presents a multiple vehicle recognition algorithm based on radar and vision sensor fusion for lane change assistance. To determine whether the lane change is possible, it is necessary to recognize not only a primary vehicle which is located in-lane, but also other adjacent vehicles in the left and/or right lanes. With the given sensor configuration, two challenging problems are considered. One is that the guardrail detected by the front radar might be recognized as a left or right vehicle due to its genetic characteristics. This problem can be solved by a guardrail recognition algorithm based on motion and shape attributes. The other problem is that the recognition of rear vehicles in the left or right lanes might be wrong, especially on curved roads due to the low accuracy of the lateral position measured by rear radars, as well as due to a lack of knowledge of road curvature in the backward direction. In order to solve this problem, it is proposed that the road curvature measured by the front vision sensor is used to derive the road curvature toward the rear direction. Finally, the proposed algorithm for multiple vehicle recognition is validated via field test data on real roads.

A Study on Implementation of Service Robot Platform for Mess-Cleanup (정리정돈용 서비스 로봇 플랫폼의 구현 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 4 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.

Mobile Robot for Indoor Air Quality Monitoring (이동형 실내 공기질 측정 로봇)

  • Lee, So-Hwa;Koh, Dong-Jin;Kim, Na-Bin;Park, Eun-Seo;Jeon, Dong-Ryeol;Bong, Jae Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.537-542
    • /
    • 2022
  • There is a limit to the current indoor air quality (IAQ) monitoring method using fixed sensors and devices. A mobile robot for IAQ monitoring was developed by mounting IAQ monitoring sensors on a small multi-legged robot to minimize vibration and protect the sensors from vibration while robot moves. The developed mobile robot used a simple gait mechanism to enable the robot to move forward, backward, and turns only with the combination of forward and reverse rotation of the two DC motors. Due to the simple gait mechanism, not only IAQ data measurements but also gait motion control were processed using a single Arduino board. Because the mobile robot has small number of electronic components and low power consumption, a relatively low-capacity battery was mounted on the robot to reduce the weight of the battery. The weight of mobile robot is 1.4kg including links, various IAQ sensors, motors, and battery. The gait and turning speed of the mobile robot was measured at 3.75 cm/sec and 14.13 rad/sec. The maximum height where the robot leg could reach was 33 mm, but the mobile robot was able to overcome the bumps up to 24 mm.

Analysis of the Kinematic Characteristics at Entrance to the Straight Course from the Curvilinear Course in the 200m-Track Game (육상 200m 경기의 곡선주로에서 직선주로 진입 시 운동학적 특성분석)

  • Oh, Sei-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.51-63
    • /
    • 2002
  • This study sought to identify the kinematic characteristics at entrance to the straight course from the curvilinear course in the 200m-track game. For this purpose, this study was conducted for 4 sprinters by setting the 10m-section combined from the curvilenear track to the straight course and shooting them with the camcorder. It was set up to include all the sections of analysis by using the framework of the control point knowing the coordinate of the space and actual analysis was conducted on the motion showing the best records by conducting it for each subject five times. As a result, the following conclusion was drawn: It was found that the subjects showed the average stride of 4.5${\pm}$0.41 times at the 10-meter section and the required time of 1.42${\pm}$0.04sec. They showed the ratio average stride to height of 1.25${\pm}$0.20% and the average speed of 7.06${\pm}$0.19m/s. The displacement in the center of gravity of the human body at the section combined from the curvilinear course to the straight course was moving along the inward course of the curvilinear course, and the displacement of the leg located at the outward direction(right) was found to be larger than that of the leg located at the inward direction(left). In the speed of the left and right hand segments, it was found that the speed of the right hand located in the outward direction was faster than that of the left hand located at the inward, and it was found that the subjects progressed in the curvilinear course. The subjects showed the larger angle of the shoulder joint when the upper arm was located in the forward direction than when the it was located in the backward direction. In the curvilinear course, they showed the lower value of the lateral angle of the trunk when the right foot located at the outward direction left the ground than when the left foot located at the inward direction left the ground. And it was found that the lateral angle of the trunk became lower with approaching the straight course.