• Title/Summary/Keyword: backward motion

Search Result 168, Processing Time 0.023 seconds

Kinematic Analysis of Double Backward Somersault on the Parallel Bars (평행봉 2회전 뒤돌아 무릎 구부려 내리기 동작의 운동학적 분석)

  • Lee, Jong-Hun;Lee, Yong-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.27-40
    • /
    • 2004
  • The purpose of this study was to provide basic data for improving athletic performances by analyzing the kinematic variables of the Double Backward Somersault on the Parallel Bars through the 3D motion analysis. The subjects in this study were 5 male gymnasts who were ranked as national athletes. The results are as follows. 1. A total time(Mean Time) of performance showed $2.72{\pm}0.82\;sec$. and flight time to landing after releasing was 0.87sec.(mean). In order to perform better stable flying movement, the flight time should be increased. 2. In the change of velocity of the center of mass, when the increasing ascension velocity of the upper point was high, the position in the top point was high on releasing. 3. In the position variable of the center of mass, the mean of upper-bottom position in horizontal posture was $242.1{\pm}6.5cm$, $232.8{\pm}6.4cm$ in releasing, and $265.0{\pm}5.6cm$ in the highest point. This result is explained that the position of center of mass can be raised by using elastic power when wrist raised the bar in the releasing movement. 4. The angle of shoulder joint was $271.1{\pm}14.0$. Such a big angle influences a negative effect on the releasing velocity, because trunk is not a position in the enough vertical direction. 5. The ankle of hip joint in hand-standing was $191.1{\pm}5.9$, $118.8{\pm}5.3$ in releasing, and $122.3{\pm}5.3$ in taking on. Therefore, the result suggests that trunk should be straightly raised in taking on.

Electromyographic Analysis of a Uphill Propulsion of a Bicycle by Forward.Backward Pedaling (정.역구동 페달링에 따른 자전거 등판 시의 근전도 분석)

  • Shin, Eung-Soo;Kim, Hyun-Joong
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.171-177
    • /
    • 2008
  • This work intends to investigate the effects of pedaling directions on the muscle actions during the bicycle's uphill propulsion. A test rig was developed that consists of a bicyle with a special planetary geartrain, a height-adjustable treadmill, a rear-wheel support and a magnetic brake. A three-dimensional motion analysis was performed for measuring kinematic characteristics of the forward backward pedaling and the electromygraphy(EMG) measurements were simultaneously performed for estimating the muscle actions of the leg. In this work, four muscles are considered including Gastrocnemius muscle(GM), Vastus lateralis(VL), Tibialis anterior(TA) and Soleus(SOL) while the uphill slope is varied from $0^{\circ}$ to $6^{\circ}$. Raw EMG signals were first processed through the root-mean-square(RMS) averaging and then ensemble curves were derived by averaging the EMG RMS envelopes over 50 consecutive cycles. Results show that both the kinemactic characteristics and the muscle actions are significantly affected by the pedaling direction. The crank speed of the forward pedaling is higher but the difference in speed is reduced as the slope is increased. The ensemble curves of the :ac signals clearly exhibit some differences in their patterns, peak values and the corresponding locations with respect to the crank angle. The peak values of most EMG signals are higher for the forward pedaling regardless of the slope magnitude. However, the averages of the EMG signals are not observed to have a similar relationship with the pedaling direction, which seems to be affected by several factors such as less experience of the participants' backward pedaling. inappropriate bicycle design for the backward pedaling. These limitations will be further considered in future work.

The Effect of snatch technique improvement for men weightlifter of feedback support through quantity analysis by periods (주기적 정성적분석을 통한 훈련목표 제공이 남자 역도 인상기술 향상에 미치는 영향)

  • Moon, Young-Jin;Ryu, Jung-Hyun;Lee, Soon-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.69-83
    • /
    • 2004
  • The purpose of this study is searching for technical merits and demerits of each weight lifting player through qualitative motion analysis system. Moreover, It is also analysis the repeating the establishment of exercise purpose and studying for the effect of the field adaptation. The subject of this study was five male weight lifting players who have been engaged in Korean Delegation Team. The institution of exercise target was made through two times qualitative analysis and the result of studying for the effect of the field adaptation was produced before offering feedback. Moreover, two time analysis added after offering feedback. All analysis was based on 2-D visual analysis. The results of this study are as follows: 1. Maximal barbell moving speed in starting phase was decreased after offering feedback. This result implies advancement of technical skills after offering feedback. 2. From starting posture to 앉아받기, forward and backward moving distance of hip joint was decreased after offering feedback in all subjects. This result represents advancement of technical skills after offering feedback. 3. In terms of pull phase, forward and backward moving distance of hip and shoulder joint was decreased after offering feedback in all subjects. This result represents advancement of technical skills after offering feedback. 4. In terms of pull phase, the difference of horizontal value of coordinates was decreased after offering feedback in all subjects. This result represents advancement of technical skills after offering feedback. 5. In terms of pull phase, the motion range of hip joint was decreased after offering feedback in three of five subjects and this represents advancement of technical skills after offering feedback. However, the rest of them were not variable or narrow decreasing. This result represents that feedback system could not brought tremendous effects. 6. From apex point of barbell to 앉아받기, the difference of barbell height was decreased after offering feedback in three of five subjects and this represents advancement of technical skills after offering feedback. However, the rest of them weren't variable or narrow increasing. This result represents that feedback system could not brought tremendous effects. 7. In terms of last-pull phase, the angular velocity of knee joint was increased after offering feedback in four of five subjects and this represents advancement of technical skills after offering feedback. However, the rest of them, only one subject, decreased. This result represents that feedback system could not brought tremendous effects. 8. In terms of last-pull, the conversional tendency of maximal extension to flextion came out all but simultaneously without offering feedback in four of five subjects. This is well-performed technique. Only one subject, however, could not use power effectively because the fact that his maximal extension came out in serial, from ankle to knee and waist means dispersion of power. In addition to, after offering feedback, only one subject made increasing the maximal extension of knee in last-pull and this result represents advancement of skills after offering feedback. However, the rest of them could not make meaningful development after offering feedback. 9. It might be assumed that searching for technical merits and demerits of each weight lifting player through qualitative motion analysis system could improve player's skill.

Dynamic Electromyography Analysis of Shoulder Muscles for One-handed Manual Material Handling

  • Mo, Seung-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.313-326
    • /
    • 2015
  • Objective: The objective of this research is to quantitatively analyze muscle activities of arm and shoulder, according to direction in various types of one-handed manual material handling, based on surface electromyography. Background: Workers in industrial sites frequently carry out one-handed manual material handling using arm and shoulder muscles. Therefore, chronic load and accumulated fatigue occur to arm and shoulder muscles, which becomes a main cause of upper arm and shoulder musculoskeletal disorders. The shoulder muscles have widely range of motion, and complex interactions take place among various muscles including rotator cuff muscles. In this regard, research on interactions among should muscles, according to such various dynamic motions, is required. Method: Ten male subjects in their 20s participated in this research. This research considered upward, downward, leftward, rightward, forward and backward directions and fourteen muscles around arm and shoulder (biceps brachii and trapezius, etc.) as independent variables. The mean muscle activity was set as the dependent variable. This research extracted $4^{th}{\sim}7^{th}$ repetition signals according to ten times of repetitive muscle contraction, and analyzed the muscle activity concerned using the envelope detection technique. Results: The mean muscle activity of upward direction was analyzed highly statistically significant. The reason is that the effect of gravity works to arm and shoulder muscles. Also, it is conjectured that deformation of coracoacromial ligament was caused, and its contact pressure increased, due mainly to the shoulder flexion, and therefore load was analyzed high. Muscle activity was analyzed significantly low, according to concentric ballistic motion used in the concentric contraction phase by storing elastic energy in the eccentric contraction phase with a motion to bring the weight to the front of subject's body as to downward, leftward and backward directions. Because, elbow joint's flexion-extension motions mainly occurred, biceps brachii was analyzed high muscle activity as the prime mover. Conclusion: The information on the quantitative load of muscles can be applied to ergonomic work design for one-handed manual material handling to minimize muscle load. Application: This research has effectively identified muscle activity according to dynamic contraction by applying an envelope detection technique. The results can be used for ergonomic work design to minimize muscle load during the one-handed manual material handling, according to each direction. The research results are expected to be used for musculoskeletal disorder prevention and physiotherapy in the rehabilitation medical field, based on the muscle load of arm and shoulder in various directions.

Edge-Directional Joint Disparity-Motion Estimation of Stereoscopic Sequences (경계 방향성을 고려한 스테레오 동영상의 움직임-변이 동시추정 기법)

  • 김용태;서형갑;박창섭;이재호;손광훈
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.196-206
    • /
    • 2004
  • This paper presents an efficient joint disparity-motion estimation algorithm for stereo sequence CODEC. Disparity vectors are estimated by the left and right motion vectors and previous disparity vectors for every frame. In order to obtain more accurate disparity vectors. we include a spatial prediction Process after the feint estimation. From joint estimation and spatial prediction, we can obtain accurate disparity vectors and then Increase coding efficiency. Finally, we proposed the backward quadtree decomposition. which helps the encoder to have a more detailed disparity vector map without transmitting additional coding bits for quadtree information. We confirmed superior performance of the proposed method through computer simulation.

Longitudinal Flight Dynamic Modeling and Stability Analysis of Flapping-wing Micro Air Vehicles (날갯짓 비행 로봇의 세로방향 비행 동역학 모델링 및 안정성 해석)

  • Kim, Joong-Kwan;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • This paper investigates the longitudinal flight dynamics and stability of flapping-wing micro air vehicles. Periodic external forces and moments due to the flapping motion characterize the dynamics of this system as NLTP (Non Linear Time Periodic). However, the averaging theorem can be applied to an NLTP system to obtain an NLTI (Non Linear Time Invariant) system which allows us to use a standard eigen value analysis to assess the stability of the system with linearization around a reference point. In this paper, we investigate the dynamics and stability of a hawkmoth-scale flapping-wing air vehicle by establishing an LTI (Linear Time Invariant) system model around a hovering condition. Also, a direct time integration of full nonlinear equations of motion of the flapping-wing micro air vehicle is conducted to see how the longitudinal flight dynamics appear in the time domain beyond the reference point, i.e. hovering condition. In the study, the flapping-wing air vehicle exhibited three distinct dynamic modes of motion in the longitudinal plane of motion: two stable subsidence modes and one unstable oscillatory mode. The unstable oscillatory mode is found to be a combination of a pitching velocity state and a forward/backward velocity state.

Development of a Cardiac Catheter Remote Control Robot Platform for Radiofrequency Ablation Intervention (고주파 절제술을 위한 심장전극도자 원격 제어 로봇 플랫폼의 개발)

  • Park, Jun-Woo;Song, Seung-Joon;Lee, Jung-Chan;Choi, Hyuk;Lee, Jung-Joo;Choi, Jae-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1417-1426
    • /
    • 2011
  • Radiofrequency ablation through cardiac catheterization is one of minimally invasive intervention procedures used in drug resistant arrhythmia treatment. To facilitate more accurate and precise catheter navigation, systems for robotic cardiac catheter navigation have been developed and commercialized. The authors have been developing a novel robotic catheter navigation system. The system is a network-based master-slave configuration 3-DOF (Degree-Of-Freedom) robotic manipulator for operation with conventional cardiac ablation catheter. The catheter manipulation motion is composed of the translation (forward/backward) and the roll movements of the catheter and knob rotation for the catheter tip articulation. The master manipulator comprises an operator handle compartment for the knob and the roll movement input, and a base platform for the translation movement input. The slave manipulator implements a robotic catheter platform in which conventional cardiac catheter is mounted and the 3-DOF motions of the catheter are controlled. The system software that runs on a realtime OS based PC, implements the master-slave motion synchronization control in the robot system. The master-slave motion synchronization performance tested with step, sinusoidal and arbitrarily varying motion commands showed satisfactory results with acceptable level of steady state error. The developed system will be further improved through evaluation of safety and performance in in vitro and in vivo tests.

Rotordynamic Analysis Using a Direction Frequency Response Function (방향성 주파수 응답 함수를 이용한 회전체 동역학 해석)

  • Donghyun Lee;Byungock Kim;Byungchan Jeon;Hyungsoo Lim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.221-227
    • /
    • 2023
  • A rotordynamic system consists of components that undergo rotational motion. These components include shafts, impellers, thrust collars, and components that support rotation, such as bearings and seals. The motion of this type of rotating system can be modeled as two-dimensional motion and, accordingly, the equation of motion for the rotordynamic system can be represented using complex coordinates. The directional frequency response function (dFRF) can be derived from this complex coordinate system and used as an effective analytical tool for rotating machinery. However, the dFRF is not widely used in the field because most previous studies and commercial software are based on real coordinate systems. The objective of the current study is to introduce the dFRF and show that it can be an effective tool in rotordynamic analysis. In this study, the normal frequency response function (nFRF) and dFRF are compared under rotordynamic analysis for isotropic and unisotropic rotors. Results show that in the nFRF, the magnitude of the response is the same for both positive and negative frequencies, and the response is similar under all modes. Consequently, the severity of the mode cannot be identified. However, in the dFRF, the forward and backward modes are clearly distinguishable in the frequency domain of the isotropic rotor, and the severity of the mode can be identified for the unisotropic rotor.

Rotordynamic Analysis Using a Direction Frequency Response Function (방향성 주파수 응답 함수를 이용한 회전체 동역학 해석)

  • Donghyun, Lee;Byungchan, Jeon ;Byungock, Kim;Hyungsoo, Lim
    • Journal of Domestic Journal Test
    • /
    • v.11 no.2
    • /
    • pp.221-227
    • /
    • 2023
  • − A rotordynamic system consists of components that undergo rotational motion. These components include shafts, impellers, thrust collars, and components that support rotation, such as bearings and seals. The motion of this type of rotating system can be modeled as two-dimensional motion and, accordingly, the equa- tion of motion for the rotordynamic system can be represented using complex coordinates. The directional fre- quency response function (dFRF) can be derived from this complex coordinate system and used as an effective analytical tool for rotating machinery. However, the dFRF is not widely used in the field because most pre- vious studies and commercial software are based on real coordinate systems. The objective of the current study is to introduce the dFRF and show that it can be an effective tool in rotordynamic analysis. In this study, the normal frequency response function (nFRF) and dFRF are compared under rotordynamic analysis for isotropic and unisotropic rotors. Results show that in the nFRF, the magnitude of the response is the same for both pos- itive and negative frequencies, and the response is similar under all modes. Consequently, the severity of the mode cannot be identified. However, in the dFRF, the forward and backward modes are clearly distinguishable in the frequency domain of the isotropic rotor, and the severity of the mode can be identified for the uniso- tropic rotor.

The Kinematic Analysis of the Tennis Flat Serve Motion (테니스 플랫 서브 동작의 운동학적 분석)

  • Oh, Cheong-Hwan;Choi, Su-Nam;Nam, Taek-Gil
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.97-108
    • /
    • 2006
  • C. H. OH, S. N. CHOI, T. G. NAM, The Kinematic Analysis of the Tennis Flat Serve Motion, Korean Jiurnal of Sports Biomechanics, Vol. 16, No. 2, pp. 97-108, 2006. By the comparison and the analysis of the different factors during the tennis flat serve motion such as the required time per section, the movement displacement of the racket, the velocity of the upper limbs joints, the physical center of gravity, and the angle and the angular velocity of the upper limbs joints between an ace player and a mediocre player, these following results were drawn. First, the experiment result of the total time required per section in a tennis flat serve motion showed that an ace player was faster than a mediocre player by 0.4 seconds. This result suggested that it was required to increase the speed of the racket head by a swift swing to perform an effective flat serve motion. Second, the experiment result of the movement displacement of the racket in the tennis flat serve motion showed that an ace player greatly moved toward the left side on an x-axis. But both an ace and a mediocre player were shown to be at the similar points on a y-axis at the moment of the impact of the racket. An ace player was also shown to be located at a higher position on a z-axis by 0.23m. Third, the velocity of the center of gravity of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fourth, the velocity of the upper limb joints of an ace player was faster in every phase than that of a mediocre player in a tennis flat serve motion. Fifth, the experiment result of the speed of the racket head in tennis flat serve motion showed that a mediocre player was faster than an ace player in the first phase, but the latter was faster than the former in the second, third, and the fourth phases. Sixth, at the moment of impact of a tennis flat serve, an ace player had greater flexion of the angle of the wrist joints by an 11.8 degree than a mediocre player. An ace player also had greater extension of the angle of the elbow joint and the shoulder joint respectively by a 5.2 degree and a 1.4 degree with a mediocre player. Seventh, an ace player had greater angular velocity of the upper limb joints and the hip joints than a mediocre player at the moment of the impact of tennis flat serve. Eighth, an ace player was shown to have a greater change of the forward and the backward inclination (or the anterior and posterior inclination) of the upper body