• Title/Summary/Keyword: backward error

Search Result 146, Processing Time 0.037 seconds

Development of motion-detective algorithm using accelerometer (가속도 센서를 이용한 동작 인식 알고리즘 개발)

  • Lim, Young-Chul;Park, Chi-Ho;Kim, Sang-Dong;Jung, Woo-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.594-596
    • /
    • 2006
  • In this thesis, we propose a algorithm that is able to detect a user's motion. A minute noise of accelerometer arises cumulative error in case of converting velocity and distance, which makes it difficult to detect movement of sensor. We use a lowpass filter, ALS algorithm, and motion detection block to minimize such cumulative error. we experiment using a motion-detective module which is composed of accelerometer, micro-controller, and serial interface. Our scheme is capable of detecting such as up, down, left, right, forward, and backward movement of the module. It is expected that our scheme is applied to a game controller or user interface of a next generation PC.

  • PDF

Very Low Bit Rate Video Coding Algorithm Using Uncovered Region Prediction (드러난 영역 예측을 이용한 초저 비트율 동영상 부호화)

  • 정영안;한성현;최종수;정차근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.771-781
    • /
    • 1997
  • In order to solve the problem of uncovered background region due to the region-due to the region-based motion estimation, this paper presents a new method which generates the uncovered region memory using motion estimation and shows the application of the algorithm for very low bit rate video coding. The proposed algorithm can be briefly described as follows it detects the changed region by using the information of FD(frame difference) and segmentation, and then as for only that region the backward motion estimation without transmission of shape information is done. Therefore, from only motion information the uncovered background region memory is generated and updated. The contents stored in the uncovered background region memory are referred whenever the uncovered region comes into existence. The regions with large prediction error are transformed and coded by using DCT. As results of simulation, the proposed algorithm shows the superior improvement in the subjective and objective image quality due to the remarkable reduction of transmission bits for prediction error.

  • PDF

UNCONDITIONAL STABILITY AND CONVERGENCE OF FULLY DISCRETE FEM FOR THE VISCOELASTIC OLDROYD FLOW WITH AN INTRODUCED AUXILIARY VARIABLE

  • Huifang Zhang;Tong Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.273-302
    • /
    • 2023
  • In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.

Design of a New VSS-Adaptive Filter for a Potential Application of Active Noise Control to Intake System (흡기계 능동소음제어를 위한 적응형 필터 알고리즘의 개발)

  • Kim, Eui-Youl;Kim, Ho-Wuk;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.231-239
    • /
    • 2009
  • The filtered-x LMS (FX-LMS) algorithm has been applied to the active noise control (ANC) system in an acoustic duct. This algorithm is designed based on the FIR (finite impulse response) filter, but it has a slow convergence problem because of a large number of zero coefficients. In order to improve the convergence performance, the step size of the LMS algorithm was modified from fixed to variable. However, this algorithm is still not suitable for the ANC system of a short acoustic duct since the reference signal is affected by the backward acoustic wave propagated from a secondary source. Therefore, the recursive filteredu LMS algorithm (FU-LMS) based on infinite impulse response (IIR) is developed by considering the backward acoustic propagation. This algorithm, unfortunately, generally has a stability problem. The stability problem was improved by using an error smoothing filter. In this paper, the recursive LMS algorithm with variable step size and smoothing error filter is designed. This recursive LMS algorithm, called FU-VSSLMS algorithm, uses an IIR filter. With fast convergence and good stability, this algorithm is suitable for the ANC system in a short acoustic duct such as the intake system of an automotive. This algorithm is applied to the ANC system of a short acoustic duct. The disturbance signals used as primary noise source are a sinusoidal signal embedded in white noise and the chirp signal of which the instantaneous frequency is variable. Test results demonstrate that the FU-VSSLMS algorithm has superior convergence performance to the FX-LMS algorithm and FX-LMS algorithm. It is successfully applied to the ANC system in a short duct.

  • PDF

Design of a New VSS-Adaptive Filter for a Potential Application of Active Noise Control to Intake System (흡기계 능동소음제어를 위한 적응형 필터 알고리즘의 개발)

  • Kim, Eui-Youl;Kim, Byung-Hyun;Kim, Ho-Wuk;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.146-155
    • /
    • 2012
  • The filtered-x LMS(FX-LMS) algorithm has been applied to the active noise control(ANC) system in an acoustic duct. This algorithm is designed based on the FIR(finite impulse response) filter, but it has a slow convergence problem because of a large number of zero coefficients. In order to improve the convergence performance, the step size of the LMS algorithm was modified from fixed to variable. However, this algorithm is still not suitable for the ANC system of a short acoustic duct since the reference signal is affected by the backward acoustic wave propagated from a secondary source. Therefore, the recursive filtered-u LMS algorithm(FU-LMS) based on infinite impulse response(IIR) is developed by considering the backward acoustic propagation. This algorithm, unfortunately, generally has a stability problem. The stability problem was improved by using an error smoothing filter. In this paper, the recursive LMS algorithm with variable step size and smoothing error filter is designed. This recursive LMS algorithm, called FU-VSSLMS algorithm, uses an IIR filter. With fast convergence and good stability, this algorithm is suitable for the ANC system in a short acoustic duct such as the intake system of an automotive. This algorithm is applied to the ANC system of a short acoustic duct. The disturbance signals used as primary noise source are a sinusoidal signal embedded in white noise and the chirp signal of which the instantaneous frequency is variable. Test results demonstrate that the FU-VSSLMS algorithm has superior convergence performance to the FX-LMS algorithm and FX-LMS algorithm. It is successfully applied to the ANC system in a short duct.

Development of a Method for Optimal Fuel Distribution in 1-D Cylindrical Geometry (일차원 cylinder구조에서의 최적 연료분포를 구하는 방법의 개발)

  • Kim, Yun-Ho;Oh, Soo-Youl;Kim, Jung-Hwan;Hong, Seung-Ryong;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 1988
  • Previously determining the fuel loading pattern is based on the trial and error method. For a candidate pattern, the core analysis is performed and the pattern is examined whether it satisfies the imposed constraints such as the power peaking or not. The pattern, then, is revised by the shuffling of assemblies and the revision is repeated until all of the conditions are met. This method unavoidably requires many iterative diffusion calculations, computing times and accumulated experiences. To overcome these disadvantages, a new method which is called backward diffusion calculation is introduced. If the most desirable power distribution is already known, the optimal loading pattern can be obtained by solving the backward diffusion equation with simple calculation. In this study, the basic equation for the backward diffusion calculation is derived and the optimal power and fuel distributions are searched in one-dimensional cylindrical geometry by using the proposed method. In addition, the basis to determine the optimal power and fuel distributions is suggested for the real core geometry.

  • PDF

The effect of Pd film evaporation condition on the kinetics of hydrogen absorption-desorption (Pd 박막 시료의 제작 조건이 수소 흡수-방출 동역학에 미치는 영향에 관한 연구)

  • Um, Dae-hyun;Yoo, Joung-gouk;Cho, Young-sin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.3
    • /
    • pp.127-133
    • /
    • 1998
  • This study was conducted to know to the effect of Pd film($180{\AA}$ thick) evaporation condition on the kinetics of hydrogen absorption-desorption. The activation energy of the forward reaction, the activation energy of the backward reaction, and the enthalpy were calculated by hydrogen absorption-desorption in ${\alpha}$-phase.($25{\sim}50^{\circ}C$ temperature) The activation energy of the forward reaction of Pd film, which is made at room temperature, is $6.4{\pm}0.4$ kcal/mol H and of the backward reaction $8.4{\pm}1.5$ kcal/mol H, which yields the reaction enthalpy -2kcal/mol H. The activation energy of forward reaction of Pd film, which is made at $300^{\circ}C$, is $-0.18{\pm}0.61$ kcal/mol H and of the backward reaction $-0.17{\pm}2.3$ kcal/mol H. The sample of $300^{\circ}C$ is more stable than the sample of room temperature in its struciural compactness and resistance value but standard error of result of $300^{\circ}C$ sample is higher than sample of room temperature do.

  • PDF

An inverse LQG/LTR problem applied to the vehicle steering system

  • Park, Yong-Woon;Kim, Dae-Hyun;Scott, Kimbrough
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.324-327
    • /
    • 1996
  • This paper describes the robust controller design methods applied to the problem of an automatic system for tow-vehicle/trailer combinations. This study followed an inverse Linear Quadratic Regulator(LQR) approach which combines pole assignment methods with conventional LOR methods. It overcomes two concerns associated with these separate methods. It overcomes the robustness problems associated with pole placement methods and trial and error required in the application of the LQR problem. Moreover, a Kalman filter is used as the observer, but is modified by using the loop transfer recovery (LTR) technique with modified transmission zero assignment. The proposed inverse LQG,/LTR controllers enhances the forward motion stability and maneuverability of the combination vehicles. At high speeds, where the inherent yaw damping of the vehicle system decreases, the controller operates to maintain an adequate level of yaw damping. At backward moton, both 4WS (2WS tow-vehicle, 2WS trailer) and 6WS (4WS tow-vehicle, 2WS trailer) control laws are proposed by using inverse LQG/LTR method. To evaluate the stability and robustness of the proposed controllers, simulations for both forward and backward motion were conducted using a detailed nonlinear model. The proposed controllers are significantly more robust than the previous controllers and continues to operate effectively in spite of parameter perturbations that would cause previous controllers to enters limit cycles or to loose stability.

  • PDF

An Experimental Study of Roughness Effects on the Turbulent Flow Downstream of a Backward-Facing Step (조도가 후향계단 주위의 난류유동에 미치는 영향에 대한 실험적 연구)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2083-2099
    • /
    • 1991
  • An experiment has been carried out to investigate the aerodynamic effect of surface roughness on the characteristics of the turbulent separation and reattaching flow downstream of a backward-facing step. The distributions of boundary layer parameters, forward-flow fraction and turbulent stresses in the region near the reattachment point are measured with a split film sensor. It is demonstrated that the streamwise distributions of the forward-flow fraction in the recirculation and reattachment regions are similar, independent of the roughness. The reattachment length is found to be only weakly affected by the roughness. It is also shown that the velocity profile on the rough surface approaches to that of the equilibrium turbulent boundary layer faster than that on the smooth surface in the redeveloping region after reattachment.

Manufacturing Integral Safety Vents in Prismatic Lithium-ion Batteries (직사각형 리튬 이온 전지의 일체형 안전장치 제조 공정에 관한 연구)

  • Kim, J. H.;Lee, K. H.;Lim, Y. J.;Kim, B. M.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.293-298
    • /
    • 2015
  • A safety vent is crucial to protect its user from unpredictable explosions caused by increasing internal pressure of the lithium-ion batteries. In order to prevent the explosion of the battery, a safety vent rupture is required when the internal pressure reaches a critical value. In conventional manufacturing, the cap plate and the safety vent are fabricated separately and subsequently welded to each other. In the current study, a manufacturing process including a backward extrusion and coining process is suggested to produce an integral safety vent which also has the benefit of increasing production efficiency. FE simulations were conducted to predict the rupture pressure and to design the safety vent using a ductile fracture criterion and the element deletion method. The critical value, C, in the ductile fracture criterion was obtained from uniaxial tensile tests with an annealed sheet of 1050-H14 aluminum alloy. Rupture tests were preformed to measure the rupture pressure of the safety vent. The results met the required rupture pressure within 8.5±0.5 kgf/cm2. The simulation results were compared with experimental results, which showed that the predicted rupture pressures are in good agreement with experimentally measured ones with a maximum error of only 3.9%.