• Title/Summary/Keyword: backward difference

Search Result 254, Processing Time 0.026 seconds

Differences in the Gait Pattern and Muscle Activity of the Lower Extremities during Forward and Backward Walking on Sand

  • Kwon, Chae-Won;Yun, Seong Ho;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.45-50
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the spatiotemporal and kinematic gait parameters and muscle activity of the lower extremities between forward walking on sand (FWS) and backward walking on sand (BWS) in normal adults. Methods: This study was conducted on 13 healthy adults. Subjects performed FWS and BWS and the spatiotemporal and kinematic gait parameters of stride time, stride length, velocity, cadence, step length, stance, swing, double support, and hip range of motion (ROM), knee ROM were measured by a wearable inertial measurement unit system. In addition, the muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GA) was measured. Results: The stride length, stride velocity, cadence, and step length in the BWS were significantly lower than FWS (p<0.05), and stride time was significantly greater (p<0.05). However, there was no significant difference in the ratio of stance, swing, and double support between the two (p>0.05). The kinematic gait parameters, including hip and knee joint range of motion in BWS, were significantly lower than FWS (p<0.05). The muscle activity of the RF in BWS was significantly higher than FWS (p<0.05), but the muscle activity of the BF, TA, GA did not show any significant differences between the two movements (p>0.05). Conclusion: A strategy to increase stability by changing the gait parameters is used in BWS, and this study confirmed that BWS was a safe and effective movement to increase RF muscle activity without straining the joints. Therefore, BWS can be recommended for effective activation of the RF.

The Effect of Dispersion Relations on the Determination of Surface Acoustical Wave Velocity (주파수 의존성이 표면탄성파의 속도 결정에 미치는 영향)

  • Kwon, Sung-D.;Yoon, Seok-S.;Lee, Seung-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.340-346
    • /
    • 1999
  • Minimum reflection and backward radiation methods on liquid/solid interrace were used to determine the velocity dispersion relation of acoustical surface wave for brass and aluminum substrates and copper/stainless steel nickel/brass, and nickel/aluminum layered substrates. Dispersion data agreed to dispersion characteristics of a generalized Lamb wave. The difference between velocities determined by two phenomena was closely related to the dispersion characteristics. This correspondence was explained by considering the generation mechanism of surface waves and the concept of group velocity.

  • PDF

A Numerical Analysis of Transonic Flows in an Axisymmetric Main Nozzle of Air-Jet Loom (에어제트직기 주 노즐내 천음속 유동의 수치 해석적 연구)

  • Oh T. H.;Kim S. D.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.168-173
    • /
    • 1998
  • A numerical analysis of axisymetric backward facing step main nozzle flow in air jet loom has been accomplished. To obtain basic design data for an optimum main nozzle for an air-jet loom and to predict the transonic/supersonic flow, a characteristic based upwind flux difference splitting compressible Navier-Stokes method has been used. The wall static pressure of the main nozzle and the flow velocity changes in the nozzle tube were analyzed by changing air tank pressures and acceleration tube lengths. The flow inside the nozzle experiences double choking one at the needle tip and the other at the acceleration tube exit at tank pressures over $4kg_f/cm^2$. The tank pressure $P_t$ leading to the critical condition depends on the acceleration tube length; i.e, $P_t$ is higher for longer acceleration tubes. The $P_t$ value required to bring the acceleration tube exit to the critical condition is nearly constant regardless of acceleration tube length. The round needle tip shape might lead to less total pressure loss when compared with step shape.

  • PDF

An Experimental Study on the Recognition Region of Passive Soundscape Facilities Especially in Fountains (자연형 사운드스케이프 요소인 분수의 인지범위에 관한 실험적 연구)

  • Song, Min-Jeong;Jang, Gil-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.544-550
    • /
    • 2006
  • The interaction between people and sound and the way how people consciously perceive their environment are central approach to soundscape research. In this respect, this paper aims to clarify the relationship between water-sound level and recognition region in urban area. As a passive soundscape facility, fountain is a useful way to give place such as public square, park identity and vitality. In this study, to know the optimistic distance and sound level range from fountain, sound levels due to distance were measured and subject responses were checked by questionnaire. As a result, levels from 63 dB to 67 dB were recommended by subjects and moving forward to fountain less satisfactory than backward. Moving forward 5 m and backward 5 m(total range 10 m): there was a difference in satisfaction ratio by 2,5 out of 10. The results of this study could be used for street furniture location design and P.A. system output level.

APPLICATION OF BACKWARD DIFFERENTIATION FORMULA TO SPATIAL REACTOR KINETICS CALCULATION WITH ADAPTIVE TIME STEP CONTROL

  • Shim, Cheon-Bo;Jung, Yeon-Sang;Yoon, Joo-Il;Joo, Han-Gyu
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.531-546
    • /
    • 2011
  • The backward differentiation formula (BDF) method is applied to a three-dimensional reactor kinetics calculation for efficient yet accurate transient analysis with adaptive time step control. The coarse mesh finite difference (CMFD) formulation is used for an efficient implementation of the BDF method that does not require excessive memory to store old information from previous time steps. An iterative scheme to update the nodal coupling coefficients through higher order local nodal solutions is established in order to make it possible to store only node average fluxes of the previous five time points. An adaptive time step control method is derived using two order solutions, the fifth and the fourth order BDF solutions, which provide an estimate of the solution error at the current time point. The performance of the BDF- and CMFD-based spatial kinetics calculation and the adaptive time step control scheme is examined with the NEACRP control rod ejection and rod withdrawal benchmark problems. The accuracy is first assessed by comparing the BDF-based results with those of the Crank-Nicholson method with an exponential transform. The effectiveness of the adaptive time step control is then assessed in terms of the possible computing time reduction in producing sufficiently accurate solutions that meet the desired solution fidelity.

Effects of foot pressure using the elastic band with rings during sit-to-stand in persons with stroke

  • Hwang, Young-In;Kim, Ki-Song
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.4
    • /
    • pp.159-163
    • /
    • 2017
  • Objective: Persons with stroke have a tendency to exhibit asymmetric weight-bearing during sit-to-stand because due to the attempt to support themselves with the non-paretic foot. However, there are few devices that can assist with sit-to-stand (STS) performance. This study was designed to investigate the use of the elastic band with rings (EBR) in improving weight-bearing effectively in persons with stroke during STS training. Design: Cross-sectional study. Methods: Thirteen stroke survivors participated in the study. An EBR was applied onto the patient during STS activity. The foot pressure was measured before and after wearing the EBR, with a 5-minute rest period between measurements. Subjects were asked to perform each test twice with and without the EBR. Bilateral feet pressures were measured with standing posture being divided into the forward and backward aspects. The foot contact pressure during STS activity was measured with the CONFORMat System. Results: With EBR, the forward pressure of the affected foot significantly increased while the less-affected forward foot pressure significantly decreased (p=0.015 and p=0.023, respectively). The backward foot pressure did not differ significantly in the two limbs, and there was no difference with and without the EBR in terms of the total pressure of the affected foot. There was a significant difference with and without the EBR in the total pressure of the less-affected foot (p<0.05). Conclusions: STS training with the EBR has been shown to improve weight-bearing of both feet while decreasing the total pressure of the less-affected foot in stroke survivors. Therefore, we suggest that the EBR is a useful tool for STS training for persons with stroke in the clinic.

A Scalable Change Detection Technique for RDF Data using a Backward-chaining Inference based on Relational Databases (관계형 데이터베이스 기반의 후방향 추론을 이용하는 확장 가능한 RDF 데이타 변경 탐지 기법)

  • Im, Dong-Hyuk;Lee, Sang-Won;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.37 no.4
    • /
    • pp.197-202
    • /
    • 2010
  • Recent studies on change detection for RDF data are focused on not only the structural difference but also the semantic-aware difference by computing the closure of RDF models. However, since these techniques which take into account the semantics of RDF model require both RDF models to be memory resident, or they use a forward-chaining strategy which computes the entire closure in advance, it is not efficient to apply them directly to detect changes in large RDF data. In this paper, we propose a scalable change detection technique for RDF data, which uses a backward-chaining inference based on relational database. Proposed method uses a new approach for RDF reasoning that computes only the relevant part of the closure for change detection in a relational database. We show that our method clearly outperforms the previous works through experiment using the real RDF from the bioinformatics domain.

DEPENDENCE OF WEIGHTING PARAMETER IN PRECONDITIONING METHOD FOR SOLVING LOW MACH NUMBER FLOW (낮은 Mach수유동 해석을 위한 Preconditioning 가중계수의 의존성)

  • An, Y.J.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • A dependence of weighting parameter in preconditioning method for solving low Mach number flow with incompressible flow nature is investigated. The present preconditioning method employs a finite-difference method applied Roe‘s flux difference splitting approximation with the MUSCL-TVD scheme and 4th-order Runge-Kutta method in curvilinear coordinates. From the computational results of benchmark flows through a 2-D backward-facing step duct it is confirmed that there exists a suitable value of the weighting parameter for accurate and stable computation. A useful method to determine the weighting parameter is introduced. With this method, high accuracy and stable computational results were obtained for the flow with low Mach number in the range of Mach number less than 0.3.

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won;Chung, Sang-Kwon;Lee, Yoon-Ju
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1225-1234
    • /
    • 2010
  • Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

Analysis of Transient Response from Conducting Wire Scatterer and Antenna Using Integral Equation (적분 방정식을 이용한 도선 산란체 및 안테나의 과도응답 해석)

  • Jung, Baek-Ho;Seo, Jung-Hoon;Youn, Hee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.559-566
    • /
    • 2002
  • In this paper, we present an accurate and stable method for the solution of the transient electromagnetic response from the conducting wire structures using the time domain integral equation. By using an implicit scheme with the central finite difference approximation for the time domain electric field integral equation, we obtain the transient response from a wire scatterer illuminated by a plane wave and a conducting wire antenna with an impressed voltage source. Also, we consider a wire above a 3-dimensional conducting object. Numerical results are presented, which show the validity of the presented methodology, and compared with a conventional method using backward finite difference approximation.