• Title/Summary/Keyword: backward Extrusion

Search Result 117, Processing Time 0.023 seconds

A Study on the Damage Propagation of an Aircraft Material During Forming (항공기 재료 성형시의 손상진전에 관한 연구)

  • 김위대;김진희;김승조
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.131-140
    • /
    • 1995
  • In this paper damage propagation of a material during forming is investigated with the concept of continuum damage mechanics. An isotropic damage model based on the theory of materials of type N is adopted to describe the damage process of a ductile material with large elasto-viscoplastic deformation. The stiffness degradation of the loaded material is chosen as a damage measure. The highly nonlinear equilibrium equations are reduced to the incremental weak form and approximated by the total Lagrangian finite element method. To simulate contact condition, extended interior penalty method with modified coulomb friction law is adopted. The displacement control method along with the modified Riks' continuation technique is used to solve the incremental iterative equations. As numerical examples, upsetting problem and backward extrusion problem are simulated and the results of damage propagation and $J_2$ stress contours with and without friction are presented.

  • PDF

A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body (강철재 약협의 공정해석 및 성형공정 개선에 관한 연구)

  • Jang, Dong Hwan;Yu, Tae Gon;Hwang, Byeong Bok
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.246-246
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

A Study on the Analysis and Improvement of Forming Processes of a Steel Shell Body (강철재 약협의 공정해석 및 성형공정 개선에 관한 연구)

  • 장동환;유태곤;황병복
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.245-252
    • /
    • 2001
  • The conventional and new forming processes of a steel shell body are analyzed by the rigid-plastic finite element method. The conventional process contains five forming stages such as bending, drawing, ironing, heading and sizing, which was designed by a forming equipment expert. The results of simulation of the conventional forming process are summarized in terms of deformation patterns and load-stroke relationships for each forming operation. Based on the simulation results of the current five-stage, the shell body forming Process including backward extrusion is designed for improving the conventional process sequence. Forming loads of the proposed process are within the limit value, which is proposed by experts and the proposed process is found to be proper for manufacturing steel shell body.

  • PDF

A Study on Developementof UBST Program for Axisymmetric Metal Forming Process (축대칭 성형공정에 대한 유동함수 상계요소법의 프로그램 개발에 관한 연구)

  • 김영호;배원병;박재우;엄태준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.124-130
    • /
    • 1995
  • An upper-bound elemental stream function technique(UBST) is proposed for solivng forging and backward extrusion problems that are geometrically complex or need a forming simulation . And in the forging problems, this study investigates that layer of elements effects dissipation of total energy and load. The element system of UBSTuses the curve fitting property of FEM and the fluid incompressiblity of the stream function . The foumulated optimal design problems with constraints ae solved by the flixible toerance method. In the closed-die forging and backward extrusion, the result of layer of element by this study produces a lower upper-bound solution than that fo UBET and conventional layer of element . And the main advantage of UBST program is that a computer code, once written , can be used for a large variety problems by simply changing the input data.

  • PDF

Preform Design of Backward Extrusion Based on Inference of Analytical Knowledge (해석적 지식 추론을 통한 후방 압출푸의 예비 성형체 설계)

  • 김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.84-87
    • /
    • 1999
  • This paper presents a preform design method that combines the analytic method and inference of known knowledge with neural network. The analytic method is a finite element method that is used to simulate backward extrusion with pre-defined process parameters. The multi-layer network and back-propagation algorithm are utilized to learn the training examples from the simulation results. The design procedures are utilized to learn the training examples from the simulation results. The design procedures are two methods the first the neural network infer the deformed shape from the pre-defined processes parameters. The other the network infer the processes parameters from deformed shape. Especially the latest method is very useful to design the preform From the desired feature it is possible to determine the processes parameters such as friction stroke and tooling geometry. The proposed method is useful for shop floor to decide the processes parameters and preform shapes for producing sound product.

  • PDF

Backward Extrusion Process Analysis and Volume Fraction Optimization of Titanium (티타늄합금의 후방압출 공정해석 및 상분율 최적화)

  • Shin Tae-Jin;Lee You-Hwan;Yeum Jong-Taek;Hong Sung-Suk;Park No-Kwang;Shim In-Ok;Lee Chong-Soo;Hwang Sang-Moo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.74-80
    • /
    • 2004
  • Titanium alloys are vital elements for developing advanced structural components, especially in aerospace applications. However, process design for successful forming of titanium alloys is a difficult task, which has to be achieved within a very narrow range of process parameters. In this paper is a finite element based optimal design technique is presented and applied to volume fraction optimization process design in backward extrusion of titanium alloys.

An Upper-Bound Analysis of the Socket Forming Process (Socket Forming에 관한 상계해석)

  • Hwang, Bum-Chul;Hong, Seung-Jin;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.151-156
    • /
    • 2000
  • A kinematically-admissible velocity field is proposed to determine the forming load the average extruded length and the velocity distribution in the forward and backward extrusion process of a socket. Experiments are carried out with antimony-lead billets at room temperature using the rectangular punch and the hexagonal die. The theoretical predictions of the forming load and the average extruded length are in good agreement with the experimental results.

  • PDF

Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material (소성가공시 재료유동에 대한 수치해석 및 모델실험)

  • 김헌영;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 1993
  • The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behavior in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method.

Forming Analysis and Design of Cold Gear Forging using 3D Finite Element Method (3차원 유한요소법을 적용한 냉간단조 기어 성형 해석 및 설계)

  • 송종호;김수영;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.108-111
    • /
    • 2002
  • It is important to predict forming procedure for minimizing trial-and-error in the application of cold forging of gears. In this study, 3-dimensional simulations of cold forging processes of spur and bevel gear were carried out using finite element method to investigate the characteristics of the processes. From the simulation result it was found that incomplete teeth forming of spur gear was occurred with increase of teeth number in forging by forward extrusion. It can be reduced through division of material flows at the initial forming state using forward/backward combined extrusion.

  • PDF

Process Design in Multi-stage Forming of an Automobile Component (다단계 자동차 부품 소성가공 공정설계)

  • 변상규;양순종;제진수;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.121-129
    • /
    • 1996
  • This study aimsdetecting defects for the forming precesses of X2 spline, which is designed by an industry expert. The exist process consists of 3 runs and 7 operations with 3 heat treatments. The rigid-plastic FEM analysis was carried out to design a new process and some defects were found. Thus the design was modified to get better results. it is ocnfirmed that the industry expert agree the possibility of defects derived from the FEM results.

  • PDF