• Title/Summary/Keyword: backtesting

Search Result 9, Processing Time 0.021 seconds

Performance Analysis of VaR and ES Based on Extreme Value Theory

  • Yeo, Sung-Chil
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.389-407
    • /
    • 2006
  • Extreme value theory has been used widely in many areas of science and engineering to deal with the assessment of extreme events which are rare but have catastrophic consequences. The potential of extreme value theory has only been recognized recently in finance area. In this paper, we provide an overview of extreme value theory for estimating and assessing value at risk and expected shortfall which are the methods for modelling and measuring the extreme financial risks. We illustrate that the approach based on extreme value theory is very useful for estimating tail related risk measures through backtesting of an empirical data.

A rolling analysis on the prediction of value at risk with multivariate GARCH and copula

  • Bai, Yang;Dang, Yibo;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.605-618
    • /
    • 2018
  • Risk management has been a crucial part of the daily operations of the financial industry over the past two decades. Value at Risk (VaR), a quantitative measure introduced by JP Morgan in 1995, is the most popular and simplest quantitative measure of risk. VaR has been widely applied to the risk evaluation over all types of financial activities, including portfolio management and asset allocation. This paper uses the implementations of multivariate GARCH models and copula methods to illustrate the performance of a one-day-ahead VaR prediction modeling process for high-dimensional portfolios. Many factors, such as the interaction among included assets, are included in the modeling process. Additionally, empirical data analyses and backtesting results are demonstrated through a rolling analysis, which help capture the instability of parameter estimates. We find that our way of modeling is relatively robust and flexible.

Clustering-driven Pair Trading Portfolio Investment in Korean Stock Market (한국 주식시장에서의 군집화 기반 페어트레이딩 포트폴리오 투자 연구)

  • Cho, Poongjin;Lee, Minhyuk;Song, Jae Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.123-130
    • /
    • 2022
  • Pair trading is a statistical arbitrage investment strategy. Traditionally, cointegration has been utilized in the pair exploring step to discover a pair with a similar price movement. Recently, the clustering analysis has attracted many researchers' attention, replacing the cointegration method. This study tests a clustering-driven pair trading investment strategy in the Korean stock market. If a pair detected through clustering has a large spread during the spread exploring period, the pair is included in the portfolio for backtesting. The profitability of the clustering-driven pair trading strategies is investigated based on various profitability measures such as the distribution of returns, cumulative returns, profitability by period, and sensitivity analysis on different parameters. The backtesting results show that the pair trading investment strategy is valid in the Korean stock market. More interestingly, the clustering-driven portfolio investments show higher performance compared to benchmarks. Note that the hierarchical clustering shows the best portfolio performance.

Value at Risk Forecasting Based on Quantile Regression for GARCH Models

  • Lee, Sang-Yeol;Noh, Jung-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.669-681
    • /
    • 2010
  • Value-at-Risk(VaR) is an important part of risk management in the financial industry. This paper present a VaR forecasting for financial time series based on the quantile regression for GARCH models recently developed by Lee and Noh (2009). The proposed VaR forecasting features the direct conditional quantile estimation for GARCH models that is well connected with the model parameters. Empirical performance is measured by several backtesting procedures, and is reported in comparison with existing methods using sample quantiles.

P-Triple Barrier Labeling: Unifying Pair Trading Strategies and Triple Barrier Labeling Through Genetic Algorithm Optimization

  • Ning Fu;Suntae Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.111-118
    • /
    • 2023
  • In the ever-changing landscape of finance, the fusion of artificial intelligence (AI)and pair trading strategies has captured the interest of investors and institutions alike. In the context of supervised machine learning, crafting precise and accurate labels is crucial, as it remains a top priority to empower AI models to surpass traditional pair trading methods. However, prevailing labeling techniques in the financial sector predominantly concentrate on individual assets, posing a challenge in aligning with pair trading strategies. To address this issue, we propose an inventive approach that melds the Triple Barrier Labeling technique with pair trading, optimizing the resultant labels through genetic algorithms. Rigorous backtesting on cryptocurrency datasets illustrates that our proposed labeling method excels over traditional pair trading methods and corresponding buy-and-hold strategies in both profitability and risk control. This pioneering method offers a novel perspective on trading strategies and risk management within the financial domain, laying a robust groundwork for further enhancing the precision and reliability of pair trading strategies utilizing AI models.

Performance Analysis of Economic VaR Estimation using Risk Neutral Probability Distributions

  • Heo, Se-Jeong;Yeo, Sung-Chil;Kang, Tae-Hun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.757-773
    • /
    • 2012
  • Traditional value at risk(S-VaR) has a difficulity in predicting the future risk of financial asset prices since S-VaR is a backward looking measure based on the historical data of the underlying asset prices. In order to resolve the deficiency of S-VaR, an economic value at risk(E-VaR) using the risk neutral probability distributions is suggested since E-VaR is a forward looking measure based on the option price data. In this study E-VaR is estimated by assuming the generalized gamma distribution(GGD) as risk neutral density function which is implied in the option. The estimated E-VaR with GGD was compared with E-VaR estimates under the Black-Scholes model, two-lognormal mixture distribution, generalized extreme value distribution and S-VaR estimates under the normal distribution and GARCH(1, 1) model, respectively. The option market data of the KOSPI 200 index are used in order to compare the performances of the above VaR estimates. The results of the empirical analysis show that GGD seems to have a tendency to estimate VaR conservatively; however, GGD is superior to other models in the overall sense.

Black-Litterman Portfolio with K-shape Clustering (K-shape 군집화 기반 블랙-리터만 포트폴리오 구성)

  • Yeji Kim;Poongjin Cho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.63-73
    • /
    • 2023
  • This study explores modern portfolio theory by integrating the Black-Litterman portfolio with time-series clustering, specificially emphasizing K-shape clustering methodology. K-shape clustering enables grouping time-series data effectively, enhancing the ability to plan and manage investments in stock markets when combined with the Black-Litterman portfolio. Based on the patterns of stock markets, the objective is to understand the relationship between past market data and planning future investment strategies through backtesting. Additionally, by examining diverse learning and investment periods, it is identified optimal strategies to boost portfolio returns while efficiently managing associated risks. For comparative analysis, traditional Markowitz portfolio is also assessed in conjunction with clustering techniques utilizing K-Means and K-Means with Dynamic Time Warping. It is suggested that the combination of K-shape and the Black-Litterman model significantly enhances portfolio optimization in the stock market, providing valuable insights for making stable portfolio investment decisions. The achieved sharpe ratio of 0.722 indicates a significantly higher performance when compared to other benchmarks, underlining the effectiveness of the K-shape and Black-Litterman integration in portfolio optimization.

Comparison of Dimension Reduction Methods for Time Series Factor Analysis: A Case Study (Value at Risk의 사후검증을 통한 다변량 시계열자료의 차원축소 방법의 비교: 사례분석)

  • Lee, Dae-Su;Song, Seong-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.597-607
    • /
    • 2011
  • Value at Risk(VaR) is being widely used as a simple tool for measuring financial risk. Although VaR has a few weak points, it is used as a basic risk measure due to its simplicity and easiness of understanding. However, it becomes very difficult to estimate the volatility of the portfolio (essential to compute its VaR) when the number of assets in the portfolio is large. In this case, we can consider the application of a dimension reduction technique; however, the ordinary factor analysis cannot be applied directly to financial data due to autocorrelation. In this paper, we suggest a dimension reduction method that uses the time-series factor analysis and DCC(Dynamic Conditional Correlation) GARCH model. We also compare the method using time-series factor analysis with the existing method using ordinary factor analysis by backtesting the VaR of real data from the Korean stock market.

VaR and ES as Tail-Related Risk Measures for Heteroscedastic Financial Series (이분산성 및 두꺼운 꼬리분포를 가진 금융시계열의 위험추정 : VaR와 ES를 중심으로)

  • Moon, Seong-Ju;Yang, Sung-Kuk
    • The Korean Journal of Financial Management
    • /
    • v.23 no.2
    • /
    • pp.189-208
    • /
    • 2006
  • In this paper we are concerned with estimation of tail related risk measures for heteroscedastic financial time series and VaR limits that VaR tells us nothing about the potential size of the loss given. So we use GARCH-EVT model describing the tail of the conditional distribution for heteroscedastic financial series and adopt Expected Shortfall to overcome VaR limits. The main results can be summarized as follows. First, the distribution of stock return series is not normal but fat tail and heteroscedastic. When we calculate VaR under normal distribution we can ignore the heavy tails of the innovations or the stochastic nature of the volatility. Second, GARCH-EVT model is vindicated by the very satisfying overall performance in various backtesting experiments. Third, we founded the expected shortfall as an alternative risk measures.

  • PDF